Sort by
Small Particle Fluorescence and Light Scatter Calibration Using FCMPASS Software.

Use of flow cytometry to analyze small particles has been implemented for several decades. More recently, small particle analysis has become increasingly utilized owing to the increased sensitivity of conventional and commercially available flow cytometers along with growing interest in small particles such as extracellular vesicles (EVs). Despite an increase in small particle flow cytometry utilization, a lack of standardization in data reporting has resulted in a growing body of literature regarding EVs that cannot be easily interpreted, validated, or reproduced. Methods for fluorescence and light scatter standardization are well established, and the reagents to perform these analyses are commercially available. Here, we describe FCMPASS , a software package for performing fluorescence and light scatter calibration of small particles while generating standard reports conforming to the MIFlowCyt-EV standard reporting framework. This article covers the workflow of implementing calibration using FCMPASS as follows: acquisition of fluorescence and light scatter calibration materials, cataloguing the reference materials for use in the software, creating cytometer databases and datasets to associate calibration data and fcs files, importing fcs files for calibration, inputting fluorescence calibration parameters, inputting light scatter calibration parameters, and applying the calibration to fcs files. Published 2020. U.S. Government. Basic Protocol 1: Acquisition and gating of light scatter calibration materials Basic Protocol 2: Acquisition and gating of fluorescence calibration materials Alternate Protocol: Cross-calibration of fluorescence reference materials Basic Protocol 3: Cataloguing light scatter calibration materials Basic Protocol 4: Cataloguing fluorescence calibration materials Basic Protocol 5: Creating cytometer databases and datasets Basic Protocol 6: Importing fcs files Basic Protocol 7: Fluorescence calibration Basic Protocol 8: Light scatter calibration Basic Protocol 9: Performing and reporting fcs file calibration.

Open Access
Relevant
Flow Cytometric Quantification of Granulocytic Alkaline Phosphatase Activity in Unlysed Whole Blood.

Translational research has improved the diagnosis and follow-up of hematological diseases and malignancies. However, some classical diagnostics used for research and clinical practice that have remain practically unchanged for decades may be better addressed through advances in flow cytometry technology, whereby more precise measurements may be implemented in a straightforward manner. The current method for semiquantitative analysis of granulocytic alkaline phosphatase (GAP) activity is still based on observer-dependent color-intensity classification. Here, we describe a novel strategy for flow cytometric quantification of GAP activity in which staining and analytical flow cytometry facilitate the detection and quantification of subpopulations of leukocytes with different GAP activities. Our experiments demonstrate the potential of flow cytometry as a simple and highly sensitive approach for measuring GAP activity in unlysed whole blood. Notably, a comparison of flow cytometry and enzyme cytochemistry techniques showed that enzyme activity scores were not similar, indicating that results needs to be interpreted with caution, given that the enzyme-substrate binding affinities may differ, as well as the subjective evaluation of the intensity of the precipitated dye. © 2020 Wiley Periodicals LLC. Basic Protocol: Protocol preparation, sample acquisition, and gating strategy for flow cytometric identification of alkaline phosphatase activity in granulocytes from whole blood samples Support Protocol 1: Sample preparation for granulocyte alkaline phosphatase determination by flow cytometry using no-lyse no-wash methods Support Protocol 2: Data analysis and formula to calculate the GAP score.

Relevant