Sort by
Recent Advances (2015-2020) in Drug Discovery for Attenuation of Pulmonary Fibrosis and COPD.

A condition of scarring of lung tissue due to a wide range of causes (such as environmental pollution, cigarette smoking (CS), lung diseases, some medications, etc.) has been reported as pulmonary fibrosis (PF). This has become a serious problem all over the world due to the lack of efficient drugs for treatment or cure. To date, no drug has been designed that could inhibit fibrosis. However, few medications have been reported to reduce the rate of fibrosis. Meanwhile, ongoing research indicates pulmonary fibrosis can be treated in its initial stages when symptoms are mild. Here, an attempt is made to summarize the recent studies on the effects of various chemical drugs that attenuate PF and increase patients' quality of life. The review is classified based on the nature of the drug molecules, e.g., natural/biomolecule-based, synthetic-molecule-based PF inhibitors, etc. Here, the mechanisms through which the drug molecules attenuate PF are discussed. It is shown that inhibitory molecules can significantly decrease the TGF-β1, profibrotic factors, proteins responsible for inflammation, pro-fibrogenic cytokines, etc., thereby ameliorating the progress of PF. This review may be useful in designing better drugs that could reduce the fibrosis process drastically or even cure the disease to some extent.

Open Access
Relevant
Development of a Single-Step Antibody-Drug Conjugate Purification Process with Membrane Chromatography.

Membrane chromatography is routinely used to remove host cell proteins, viral particles, and aggregates during antibody downstream processing. The application of membrane chromatography to the field of antibody-drug conjugates (ADCs) has been applied in a limited capacity and in only specialized scenarios. Here, we utilized the characteristics of the membrane adsorbers, Sartobind® S and Phenyl, for aggregate and payload clearance while polishing the ADC in a single chromatographic run. The Sartobind® S membrane was used in the removal of excess payload, while the Sartobind® Phenyl was used to polish the ADC by clearance of unwanted drug-to-antibody ratio (DAR) species and aggregates. The Sartobind® S membrane reproducibly achieved log-fold clearance of free payload with a 10 membrane-volume wash. Application of the Sartobind® Phenyl decreased aggregates and higher DAR species while increasing DAR homogeneity. The Sartobind® S and Phenyl membranes were placed in tandem to simplify the process in a single chromatographic run. With the optimized binding, washing, and elution conditions, the tandem membrane approach was performed in a shorter timescale with minimum solvent consumption and high yield. The application of the tandem membrane chromatography system presents a novel and efficient purification scheme that can be realized during ADC manufacturing.

Open Access
Relevant