Sort by
Evaluation of the Clinical Drug-Drug Interaction Potential of Pritelivir on Transporters and CYP450 Enzymes Using a Cocktail Approach.

Pritelivir is a novel viral helicase-primase inhibitor active against herpes simplex virus. In vitro drug-drug interaction studies indicated that pritelivir has the potential for clinically relevant interactions on the cytochrome P450 (CYP) enzymes 2C8, 2C9, 3A4, and 2B6, and intestinal uptake transporter organic anion transporting polypeptide (OATP) 2B1 and efflux transporter breast cancer resistance protein (BCRP). This was evaluated in 2 clinical trials. In 1 trial the substrates flurbiprofen (CYP2C9), bupropion (CYP2B6), and midazolam (CYP3A4) were administered simultaneously as part of the Geneva cocktail, while the substrate celiprolol (OAPT2B1) was administered separately. In another trial, the substrates repaglinide (CYP2C8) and rosuvastatin (BCRP) were administered separately. Exposure parameters of the substrates and their metabolites (flurbiprofen and bupropion only) were compared after administration with or without pritelivir under therapeutic concentrations. The results of these trials indicated that pritelivir has no clinically relevant effect on the exposure of substrates for the intestinal uptake transporter OATP2B1 and the CYP enzymes 3A4, 2B6, 2C9, and 2C8, and has a weak inhibitory effect on the intestinal efflux transporter BCRP. In summary, the results suggest that pritelivir has a low drug-drug interaction potential.

Open Access
Relevant
A Multicenter Assessment of the Outcomes and Toxicities of Foscarnet for Treatment of Acyclovir-Resistant Mucocutaneous Herpes Simplex in Immunocompromised Patients.

Acyclovir-resistant mucocutaneous herpes simplex virus (HSV) infection is an uncommon problem typically seen in immunocompromised hosts. Systemic treatment options are limited. The performance of foscarnet and its toxicities in this population are poorly characterized. This was a multicenter retrospective study of adults treated with foscarnet for HSV infection between January 2012 and December 2017. Relevant data were collected including demographics, baseline conditions, previous anti-HSV medications, concomitant medications, HSV outcomes, and adverse events. Acyclovir-resistant HSV infection was defined based on genotypic or phenotypic testing results; refractory infection was defined as infection not improving after 5 days of treatment-dosed antiviral therapy in those not tested for resistance. Twenty-nine patients had 31 episodes of HSV (15/18 resistant; among episodes without resistance testing, 7/10 refractory; 3 not evaluable) treated with foscarnet. All patients were immunocompromised including 19 (66%) with hematologic malignancy and 9 (31%) with HIV. Median duration of foscarnet was 16 days (range, 6-85 days). Fifteen episodes (48%) healed by the end of or after foscarnet. Median time to healing among those with resolution was 38 days (range, 9-1088 days). At least 1 adverse event during therapy was reported in 26 (84%) treatment episodes including 23 (74%) that were considered drug related. Common adverse events were electrolyte disturbance (20 [65%]) and kidney dysfunction (13 [42%]). Foscarnet was discontinued in 10 episodes (32%) due to an adverse event, including 6 due to kidney dysfunction. Among 31 episodes of HSV treated with foscarnet, only half resolved with treatment, and adverse events were common.

Open Access
Relevant
Mass Balance and Metabolite Profile after Single and Multiple Oral Doses of Pritelivir in Healthy Subjects.

Pritelivir is a helicase-primase inhibitor active against HSV. Two human mass balance trials (a multiple-dose trial and a single-dose trial) were performed to characterize the absorption, distribution, metabolism, and excretion of 100mg oral pritelivir combined with a single microdose of 14C-pritelivir. Blood, urine, and feces samples were collected up to 26 days postdose. The plasma half-life of pritelivir was 63-67 hours. Overall, 92% and 66% of the administered dose was recovered in the multiple and single dose trials, respectively. The low recovery after the single dose (66%) was most likely related to the formulation used. The major metabolic pathway was amide hydrolysis leading to amino thiazole sulfonamide (ATS) and pyridinyl phenyl acetic acid (PPA). In plasma, pritelivir, ATS, PPA, and PPA-acyl glucuronide accounted for 40.6%, 9.4%, 5.1%, and 0.2% of total radioactivity. More than 90% of drug-related material was eliminated 624 hours postdose. The majority was excreted in urine (75% and 77%), followed by feces (16% and 23%). The main components in urine were PPA-acyl glucuronide (and its isomers), ATS, and its N-demethylated isomers. Only minor metabolites were observed in feces. In conclusion, the major metabolic pathways of pritelivir have been identified with the primary excretion route being renal.

Open Access
Relevant
Luminescent reporter cells enable the identification of broad-spectrum antivirals against emerging viruses.

The emerging viruses SARS-CoV-2 and arenaviruses cause severe respiratory and hemorrhagic diseases, respectively. The production of infectious particles of both viruses and virus spread in tissues requires cleavage of surface glycoproteins (GPs) by host proprotein convertases (PCs). SARS-CoV-2 and arenaviruses rely on GP cleavage by PCs furin and subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P), respectively. We report improved luciferase-based reporter cell lines, named luminescent inducible proprotein convertase reporter cells that we employ to monitor PC activity in its authentic subcellular compartment. Using these sensor lines we screened a small compound library in high-throughput manner. We identified 23 FDA-approved small molecules, among them monensin which displayed broad activity against furin and SKI-1/S1P. Monensin inhibited arenaviruses and SARS-CoV-2 in a dose-dependent manner. We observed a strong reduction in infectious particle release upon monensin treatment with little effect on released genome copies. This was reflected by inhibition of SARS-CoV-2 spike processing suggesting the release of immature particles. In a proof of concept experiment using human precision cut lung slices, monensin potently inhibited SARS-CoV-2 infection, evidenced by reduced infectious particle release. We propose that our PC sensor pipeline is a suitable tool to identify broad-spectrum antivirals with therapeutic potential to combat current and future emerging viruses.

Open Access
Relevant
First-in-Human, Single- and Multiple-Ascending-Dose, Food-Effect, and Absolute Bioavailability Trials to Assess the Pharmacokinetics, Safety, and Tolerability of Pritelivir, a Nonnucleoside Helicase-Primase Inhibitor Against Herpes Simplex Virus in Healthy Subjects.

The pharmacokinetics and safety of the novel herpes simplex virus helicase-primase inhibitor pritelivir were evaluated in 5 phase 1 trials: a single-ascending-dose trial, 2 multiple-ascending-dose trials, a food-effect trial, and an absolute bioavailability trial in healthy male subjects. One cohort of healthy female subjects was included in the single-ascending-dose trial. Pritelivir pharmacokinetics were linear up to 480mg following single and up to 400mg following multiple once-daily doses. The half-life ranged from 52 to 83hours, and steady state was reached between 8 and 13days. Maximum plasma concentration and area under the plasma concentration-time curve from time 0 to the last quantifiable concentration were 1.5- and 1.1-fold higher in female compared to male subjects. Absolute bioavailability was 72% under fasted conditions. Following a fatty diet, pritelivir time to maximum concentration was 1.5hour delayed and maximum plasma concentration and area under the plasma concentration-time curve from time 0 to the last quantifiable concentration were 33% and 16% higher, respectively. Pritelivir was safe and well tolerated up to 600mg following single and up to 200mg following multiple once-daily doses. Considering a therapeutic dose of 100mg once-daily, pritelivir demonstrated a favorable safety and tolerability and pharmacokinetic profile in healthy subjects to support further development.

Relevant
Protein purification strategies must consider downstream applications and individual biological characteristics

BackgroundProteins are used as reagents in a broad range of scientific fields. The reliability and reproducibility of experimental data will largely depend on the quality of the (recombinant) proteins and, consequently, these should undergo thorough structural and functional controls. Depending on the downstream application and the biochemical characteristics of the protein, different sets of specific features will need to be checked.ResultsA number of examples, representative of recurrent issues and previously published strategies, has been reported that illustrate real cases of recombinant protein production in which careful strategy design at the start of the project combined with quality controls throughout the production process was imperative to obtain high-quality samples compatible with the planned downstream applications. Some proteins possess intrinsic properties (e.g., prone to aggregation, rich in cysteines, or a high affinity for nucleic acids) that require certain precautions during the expression and purification process. For other proteins, the downstream application might demand specific conditions, such as for proteins intended for animal use that need to be endotoxin-free.ConclusionsThis review has been designed to act as a practical reference list for researchers who wish to produce and evaluate recombinant proteins with certain specific requirements or that need particular care for their preparation and storage.

Open Access
Relevant
An automated microfluidic platform for the screening and characterization of novel hepatitis B virus capsid assembly modulators.

To date, hepatitis B virus (HBV) capsid assembly modulators (CAMs), which target the viral core protein and induce the formation of non-functional viral capsids, have been identified and characterized in microtiter plate-based biochemical or cell-based in vitro assays. In this work, we developed an automated microfluidic screening assay, which uses convection-dominated Taylor-Aris dispersion to generate high-resolution dose-response curves, enabling the measurements of compound EC50 values at very short incubation times. The measurement of early kinetics down to 7.7 seconds in the microfluidic format was utilized to discriminate between the two different classes of CAMs known so far. The CAM (-N), leading to the formation of morphologically normal capsids and the CAM (-A), leading to aberrant HBV capsid structures. CAM-A compounds like BAY 41-4109 and GLS4 showed rapid kinetics, with assembly rates above 80% of the core protein after only a 7 second exposure to the compound, whereas CAM-N compounds like ABI-H0731 and JNJ-56136379 showed significantly slower kinetics. Using our microfluidic system, we characterized two of our in-house screening compounds. Interestingly, one compound showed a CAM-N/A intermediate behavior, which was verified with two standard methods for CAM classification, size exclusion chromatography, and anti-HBc immunofluorescence microscopy. With this proof-of-concept study, we believe that this microfluidic system is a robust primary screening tool for HBV CAM drug discovery, especially for the hit finding and hit-to-lead optimization phases. In addition to EC50 values, this system gives valuable first information about the mode of action of novel CAM screening compounds.

Open Access
Relevant