Sort by
PHYSICOCHEMICAL ASPECTS OF THE WORK OF PASSENGER CAR BRAKE LININGS. PART II THE EFFECT OF LUBRICATING ADDITIVES

The paper presents the influence of various systems of lubricating additives which determine the performance of the friction materials of brake linings. The base hybrid friction material formulation was modified with various types of lubricating additives. These additives are divided into groups containing commonly used lubricating materials: carbons and sulphides, compounded in various proportions, influencing the formation and structure of the so-called third body layer (TBL) on the surface of the brake disc because of braking. Raman Spectroscopy (RS), time of flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and high-resolution scanning electron microscopy with an X-ray analyser (SEM-EDS) equipped with a focus ion beam (FIB) were used for chemical and morphological analysis of the surface layer of brake disc after breaking tests. The results of the physicochemical analysis of TBL were correlated with the results of tribological tests (according to the SAE-J2522 procedure, commonly known as AK-Master) on a brake dynamometer adapted to the measurements of acoustic signals (NVH – noise, vibration, and harshness). The obtained results confirm the important role played by the so-called third body layer, formed on the surface of the brake disc for safety (COF), durability (wear of friction elements) and the acoustic spectrum accompanying braking.

Relevant
Analysis of Micro-Contaminants in Solid Particles from Direct Injection Gasoline Vehicles

Exhaust emissions from vehicles are the subject of numerous studies and legal acts. In the European Union, exhaust emissions are regulated by “Euro” emission standards, which limit emissions of gaseous pollutants such as CO, CO2, HC, and NOx, as well as the particulate matter (PM) and particle number (PN). Solid particles consist of a number of micro-contaminants, inter alia polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives. Despite their highly mutagenic and carcinogenic character, these micro-contaminants are not regulated in Euro emissions standards. This paper presents both a general discussion of the phenomenon of particulate formation in and emission from direct injection gasoline engines, as well as a wide range of results on the subject. The subject of the micro-contaminants in solid particles from modern gasoline vehicles is explored. The samples of solid particles were collected from 11 groups of vehicles according to the WLTP test methodology. Solid particles from gasoline vehicles were analyzed via various analytical techniques, including ion chromatography (IC) to measure selected anion concentrations, gas chromatography with mass spectroscopy (GC-MS) to study 16 PAHs and selected PAH derivatives, scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS) for images and elemental composition, and microwave plasma atomic emission spectroscopy (MP-AES) for qualitative screening analysis of 19 elements. The study of non-regulated compounds is crucial in efforts to establish the influence of solid particles on health and the environment. Furthermore, extended studies can provide a basis for further research on vehicle emissions or other fields, such as medicine or material engineering.

Open Access
Relevant
PHYSICOCHEMICAL ASPECTS OF THE WORK OF PASSENGER CAR BRAKE LININGS. Part I: THE EFFECT OF FRICTIONAL ADDITIVES

The paper presents the influence of various systems of abrasive additives which determine the performance of the friction materials of brake pads. A friction material was used for the tests, in which the base recipe was modified with various types of abrasive additives: 1. “low steel” – of low steel content, containing aluminium and chromium oxides; 2. “hybrid” – containing in addition to abrasive components from the low steel family, abrasive components such as zirconium silicate, magnesium oxide or iron oxides, which are characteristic of the family of asbestos-free organic materials (NAO); and 3. “mild hybrid” – containing abrasive components found in the friction materials of the NAO family, on the formation and structure of the so-called third body on the surface of the brake disc as a result of braking. High-resolution scanning electron microscopy with an X-ray analyser (SEM-EDS) equipped with a focus ion beam (FIB) was used to study film thickness, morphology, and chemical composition. The results of the physicochemical analysis of the third body were correlated with the results of tribological tests on a brake dynamometer adapted to the measurements of acoustic signals (NVH – noise, vibration and harshness). The tests were carried out in accordance with the SAE-J2522 procedure, commonly known as AK-Master. The obtained results confirm the important role played by the so-called third body, formed on the surface of the brake disc for safety (COF), durability (wear of friction elements) and the acoustic spectrum accompanying braking.

Relevant
Reproducibility of the 10-nm Solid Particle Number Methodology for Light-Duty Vehicles Exhaust Measurements

Many countries worldwide have introduced a limit for solid particles larger than 23 nm for the type approval of vehicles before their circulation in the market. However, for some vehicles, in particular for port fuel injection engines (gasoline and gas engines) a high fraction of particles resides below 23 nm. For this reason, a methodology for counting solid particles larger than 10 nm was developed in the Particle Measurement Programme (PMP) group of the United Nations Economic Commission for Europe (UNECE). There are no studies assessing the reproducibility of the new methodology across different laboratories. In this study we compared the reproducibility of the new 10 nm methodology to the current 23 nm methodology. A light-duty gasoline direct injection vehicle and two reference solid particle number measurement systems were circulated in seven European and two Asian laboratories which were also measuring with their own systems fulfilling the current 23 nm methodology. The hot and cold start emission of the vehicle covered a range of 1 to 15 × 1012 #/km with the ratio of sub-23 nm particles to the >23 nm emissions being 10–50%. In most cases the differences between the three measurement systems were ±10%. In general, the reproducibility of the new methodology was at the same levels (around 14%) as with the current methodology (on average 17%).

Open Access
Relevant
Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories

The Euro 4 regulation, applicable since 2016 for L-category vehicles (i.e., two and three-wheelers, and mini cars) reduced the emission limits, but also introduced a new cycle, the WMTC (World Harmonized Motorcycle Test Cycle). The emission studies of Euro 4 motorcycles are limited, and most importantly there are no published studies comparing the results of different laboratories applying the new cycle. In this study we compared the particle and gaseous pollutants of one Euro 4 motorcycle measured in two laboratories in 2017 and 2020. The gaseous pollutant results had a variance (one standard deviation of the means) of 0.5% for CO2, 4–19% for CO, NOx, HC (hydrocarbons) and SPN (Solid Particle Number). The particulate matter mass results had higher variance of 50–60%. Additional tests with open configuration to mimic dilution at the tailpipe gave equivalent results to the closed configuration for the gaseous pollutants and SPN. The total particles (including volatiles) had significant differences between the two configurations, with the closed configuration giving higher results. The main conclusion of this study is that the new procedures have very good reproducibility, even for the SPN that is not regulated for L-category vehicles. However, the measurement of total particles needs attention due to the high sensitivity of volatile particles to the sampling conditions.

Open Access
Relevant
Analysis of Technical Capabilities, Methodology and Test Results of a Light-Commercial Vehicle Conversion to Battery Electric Powertrain

This paper describes a holistic development and testing approach for a battery electric vehicle (BEV) prototype based on a self-supporting body platform originating from a vehicle powered by an internal combustion engine. The topic was investigated in relation to the question of whether conversion of existing vehicle platforms is a viable approach in comparison to designing a new vehicle ab initio. The scope of work consisted of the development stage, followed by laboratory and on-road testing to verify the vehicle’s performance and driveability. The vehicle functionality targeted commercial daily use on urban routes. Based on the assumed technical requirements, the vehicle architecture was designed and components specified that included various sub-systems: electric motor powertrain, electronic control unit (ECU), high-voltage battery pack with battery management system (BMS), charging system, high and low voltage wiring harness and electrically driven auxiliary systems. Electric sub-systems were integrated into the existing vehicle on-board controller area network (CAN) bus by means of enhanced algorithms. The test methodology of the prototype electric vehicle included the vehicle range and energy consumption measurement using the EU legislative test cycle. Laboratory testing was performed at different ambient temperatures and for various characteristics of the kinetic energy recovery system. Functional and driveability testing was performed on the road, also including an assessment of overall vehicle durability. Based on the results of testing, it was determined that the final design adopted fulfilled the pre-defined criteria; benchmarking against competing solutions revealed favorable ratings in certain aspects.

Open Access
Relevant