Sort by
Providing multimedia tools for recording, reconstruction, visualisation and database storage/access of archaeological excavations

Over the years archaeologists have been swift to embrace new advances in technology that allow them to more comprehensively document the results of their work. Today it is commonplace to find information technologies, in the form MS Office-type tools with some CAD and GIS, deployed for primary data capture, analysis, presentation and publication. While these computing technologies can be used effectively to record and interpret archaeological sites, the radical developments in 3D recording, reconstruction and visualisation tools have had relatively limited impact upon the archaeological community. This is unfortunate as these new technologies have the potential to (a) enable the archaeologists to record their unrepeatable experiments to unprecedented levels of accuracy, (b) enable the archaeologists to reconstruct artefacts such as pottery from sherds, textures and sites from different eras (c) visualise the wealth of excavated information in dynamic new ways away from the archaeological site during post-excavation analysis, (d) make this wealth of detail available to the scholarly community as part of the publication process and secure its digital longevity through its deposition in a trusted digital library/archive and (e) communicate the excitement and importance of their archaeological site and its finds to an interested non-academic audience. This paper describes the overall concept of the EU funded project, 3D Measurement and Virtual Reconstruction of Ancient Lost Worlds of Europe (3D MURALE), that has developed and created a set of low-cost multimedia tools for recording, reconstructing, encoding, and visualising archaeological artefacts and site.

Relevant
The <i>Studierstube</i> Augmented Reality Project

Our starting point for developing the Studierstube system was the belief that augmented reality, the less obtrusive cousin of virtual reality, has a better chance of becoming a viable user interface for applications requiring manipulation of complex three-dimensional information as a daily routine. In essence, we are searching for a 3-D user interface metaphor as powerful as the desktop metaphor for 2-D. At the heart of the Studierstube system, collaborative augmented reality is used to embed computer-generated images into the real work environment. In the first part of this paper, we review the user interface of the initial Studierstube system, in particular the implementation of collaborative augmented reality, and the Personal Interaction Panel, a two-handed interface for interaction with the system. In the second part, an extended Studierstube system based on a heterogeneous distributed architecture is presented. This system allows the user to combine multiple approaches— augmented reality, projection displays, and ubiquitous computing—to the interface as needed. The environment is controlled by the Personal Interaction Panel, a twohanded, pen-and-pad interface that has versatile uses for interacting with the virtual environment. Studierstube also borrows elements from the desktop, such as multitasking and multi-windowing. The resulting software architecture is a user interface management system for complex augmented reality applications. The presentation is complemented by selected application examples.

Relevant