Sort by
Development of Arduino-based high heat detector temperature control prototype for household appliances

<span lang="EN-US">In the Philippines, fires are a widespread concern, with plenty of incidents attributed to electrical appliances. These incidents are a leading cause of non-open flame fires in the country, highlighting the urgent need for preventative measures. Existing devices could only trigger an alarm at 100 °C without shutting off the appliance automatically. To address these limitations, the researchers aimed to develop a high heat detector with 95% detection accuracy and less than 5% error in detecting high heat. This device used an Arduino Uno Board and relay to trigger an automated power-off mechanism in appliances experiencing high heat. Temperature changes were detected, and alarms were activated using an LM35 temperature sensor and buzzer. The accuracy of the LM35 sensor was assessed through hot bath tests, which included 12 trials at each temperature level between 80 °C and 150 °C with 10 °C intervals. The prototype’s performance revealed an average error rate of 1.13% and an average standard deviation of 0.9403. The computed F1 Score of 98% indicated that the prototype fulfilled the objectives. Functionality tests confirmed that the prototype successfully achieved its intended goal by shutting off the appliance when the threshold temperature was reached and enabling its operation otherwise.</span>

Open Access
Relevant
Distributed and autonomous multi-robot for task allocation and collaboration using a greedy algorithm and robot operating system platform

Research investigations in the realm of micro-robotics often center around strategies addressing the multi-robot task allocation (MRTA) problem. Our contribution delves into the collaborative dynamics of micro-robots deployed in targeted hostile environments. Employing advanced algorithms, these robots play a crucial role in enhancing and streamlining operations within sensitive areas. We adopt a tailored GREEDY approach, strategically adjusting weight parameters in a multi-objective function that serves as a cost metric. The objective function, designed for optimization purposes, aggregates the cost functions of all agents involved. Our evaluation meticulously examines the MRTA efficiency for each micro-robot, considering dependencies on factors such as radio connectivity, available energy, and the absolute and relative availability of agents. The central focus is on validating the positive trend associated with an increasing number of agents constituting the cluster. Our methodology introduces a trio of micro-robots, unveiling a flexible strategy aimed at detecting individuals at risk in demanding environments. Each micro-robot within the cluster is equipped with logic that ensures compatibility and cooperation, enabling them to effectively execute assigned missions. The implementation of MRTA-based collaboration algorithms serves as an adaptive strategy, optimizing agents' mobility based on specific criteria related to the characteristics of the target site.<p class="JAMRISAbstract"> </p>

Open Access
Relevant
Nonlinear Kalman filter for gyroscopic and accelerometer noise rejection of an unmanned aerial vehicle control strategy

This study addresses timing issues inherent in traditional proportional-integral-derivative (PID) controllers for drone angle control and introduces an innovative solution, the adaptive PID flight controller, aimed at optimizing PID gains for improved performance in terms of speed, accuracy, and stability. To enhance the controller's robustness against noise and accurately estimate the system's state, a Kalman filter is incorporated. This filtering mechanism is designed to reject noise and provide precise state estimation, thereby contributing to the overall effectiveness of the adaptive PID flight controller in managing altitude dynamics for unmanned aerial vehicles (UAVs). The comparative methodology evaluates three configurations: a single PID controller for all three angles, two PID controllers dedicated to pitch/roll and yaw angles separately, and three PID sub-controllers for each angle (pitch, roll, and yaw). The study seeks to identify the most effective PID configuration in terms of stability, responsiveness, and accuracy while highlighting the added benefits of noise rejection and state estimation through the Kalman filter. This integrated approach showcases innovation and effectiveness, introducing a comprehensive solution not explored in previous research.

Open Access
Relevant
Development of robot motion direction based on microcontroller with compass sensor

This research brings innovation to the motion and navigation system of the ‘DK-ONE’ robot. In the 2021 Indonesian ‘Search and Rescue’ robot contest, the ‘DK-ONE’ robot faced difficulties moving towards the target room. The issue was attributed to an unbalanced frame construction and friction between the robot’s legs and the arena floor, leading to leg slippage. This resulted in a mismatch between the programmed number of steps for the robot and the desired path to the target space, causing errors in the robot’s system. To address these problems, researchers conducted a study aimed at enabling the ‘DK-ONE’ robot to accurately determine its direction of motion. This research followed the waterfall method, involving stages such as system analysis, design, coding, testing, and supporting phases. The study was carried out in the integrated laboratory of the Department of Electrical Engineering Education. The development of the robot’s motion direction using a compass sensor significantly improved stability while walking on straight, flat, and uneven paths. The robot no longer experienced errors in its motion direction and remained on the intended path. As a result, the increased efficiency in robot motion also positively impacted the structural efficiency and energy consumption of the robot.

Open Access
Relevant
Development of an unmanned ground vehicle for seed planting

As global population growth intensifies the demand for sustainable food production, the application of robotics to agriculture emerges as a promising solution. This research focuses on the design, development, and deployment of an unmanned ground vehicle for seed planting, also known as a robotic seed planter. The robotic seed planter automates seed planting processes, offering advantages such as increased accuracy, reduced labour requirements, and optimal resource usage. Parametric Technology Corporation (PTC) Creo was used for the structural design, Proteus 8.14 for the circuitry design, and Arduino IDE 2.0 with Visual Studio Code for the programming. The design incorporates seed metering and drilling mechanisms guided by intelligent systems. Results show exceptional accuracy in seed placement (94%), operational efficiency, and adaptability to diverse conditions, with energy consumption relatively low. The planter is equipped with a web application for remote monitoring and control. The application is hosted on one of the microcontrollers and WebSockets protocol is utilized for inter-microcontroller communication. It offers an auto mode for automated planting and Manual mode for easier manoeuvrability. The findings of this study demonstrate the robotic seed planter’s transformative impact on precision agriculture, providing a glimpse into the future of efficient and sustainable farming operations.

Open Access
Relevant
Combining optimization and dynamic movement primitives for planning energy optimal forestry crane motions

Forestry cranes are an important tool for safe and efficient timber harvesting with forestry machines. However, their complex manual control often led to inefficiencies and excessive energy usage, due to the many joysticks and buttons that must be used in a precise sequence to perform efficient movements. To address this, the industry is increasingly turning to partial automation, making manual control more intuitive for the operator and, consequently, achieving improvements in energy efficiency. This article introduces a novel approach to energy-optimal motion planning that can be used along with a feedback control system to automate crane motions, taking over portions of the operator’s work. Our method combines dynamic movement primitives (DMPs) and an energy-optimization algorithm. DMPs is a machine learning technique for motion planning based on human demonstrations, while the optimization algorithm exploits the crane’s redundancy to find energy-optimal trajectories. Simulation results show that DMPs can replicate human-like controlled motions with a 25% reduction in energy consumption. However, our energy optimization algorithm shows improvements of over 40%, providing substantial energy savings and a promising pathway towards environmentally friendly partially automated machines.

Open Access
Relevant