Sort by
Fostered Thermomagnetic Stabilities and Boosted Mechanical Reliability Related to High Trapped Field in Composite Bulk YBa2Cu3O(7-δ) Cryomagnets.

In the quest of YBa2Cu3O(7-δ) (Y123) bulk superconductors providing strong magnetic fields without failure, it is of paramount importance to achieve high thermal stabilities to safeguard the magnetic energy inside them during the trapping-field process, and sufficient mechanical reliability to withstand the stresses derived from the Lorenz force. Herein, we experimentally demonstrate a temperature rise induced by dissipative flux motion inside an Y123 thin-wall superconductor, and a significant thermal exchange in a composite bulk Y123 cryomagnet realized by embedding this superconductor with high thermal-conductivity metal network. It resulted in stimulating the maximum trapped field Bm, which reached 6.46 T on 15.9 mm-diameter single disk superconductor after magnetization by field cooling to 17 K under 7 T, leading to an improvement of 18% compared to the thin-wall superconductor. The composite cryomagnet particularly revealed the potential to trap stronger fields if larger magnetic activation is available. By virtue of the pore-free and crack-free microstructure of this cryomagnet, its strength σR was estimated to be 363 MPa, the largest one obtained so far for Y123 bulk superconductors, thus suggesting a striking mechanical reliability that seems to be sufficient to sustain stresses derived from trapped fields stronger than any values hitherto reported.

Relevant
Thermal and mechanical behaviour of oxygen carrier materials for chemical looping combustion in a packed bed reactor

Chemical looping combustion (CLC) is a promising carbon capture technology where cyclic reduction and oxidation of a metallic oxide, which acts as a solid oxygen carrier, takes place. With this system, direct contact between air and fuel can be avoided, and so, a concentrated CO2 stream is generated after condensation of the water in the exit gas stream. An interesting reactor system for CLC is a packed bed reactor as it can have a higher efficiency compared to a fluidized bed concept, but it requires other types of oxygen carrier particles. The particles must be larger to avoid a large pressure drop in the reactor and they must be mechanically strong to withstand the severe reactor conditions. Therefore, oxygen carriers in the shape of granules and based on the mineral ilmenite were subjected to thermal cycling and creep tests. The mechanical strength of the granules before and after testing was investigated by crush tests. In addition, the microstructure of these oxygen particles was studied to understand the relationship between the physical properties and the mechanical performance.It was found that the granules are a promising shape for a packed bed reactor as no severe degradation in strength was noticed upon thermal cycling and creep testing. Especially, the addition of Mn2O3 to the ilmenite, which leads to the formation of an iron–manganese oxide, seems to results in stronger granules than the other ilmenite-based granules.

Open Access
Relevant
From the powder to the honeycomb. A comparative study of the NSR efficiency and selectivity over Pt–CeZr based active phase

The efficiency and the selectivity of a model platinum based catalyst supported on a modified ceria–zirconia oxide was evaluated in the NOx storage-reduction (NSR) process at four catalytic scales: powder, (0.5″×1.5″) flow-through monolith (FTM) system, small size (1″×2″) and full size (5.66″×10″) catalysed Diesel Particulate Filter (DPF).The washcoating of the active phase over FTM affects both the NOx storage properties and the NOx reduction step. The reduction step efficiency is especially decreased at low temperatures. It is associated with an incomplete regeneration of the storage sites and with a strong NOx desorption peak during the rich pulses of the NSR process for the FTM supported system. The NOx reduction selectivity is also strongly affected by the upscale, with an important N2O selectivity detected over FTM. The recorded NOx profiles during NSR cycles indicate a probable diffusion limitation. However, same trends were observed for both powder and FTM systems concerning the effect of the reductant mixture, for both NSR efficiency and N-compounds selectivity.After incorporation of the active phase in the porosity of the DPF, a sharp drop in NOx storage properties and subsequently in NSR efficiency are observed. Supplementary tests suggest that the diffusion from the platinum oxidizing sites to the storage sites is again very affected by the upscale. Finally, the engine bench tests confirm the low DeNOx activity of the DPF system.

Open Access
Relevant
An Effective Approach for the Development of Reliable YBCO Bulk Cryomagnets with High Trapped Field Performances

Widespread use of YBa2Cu3O7‐δ (Y123) bulk superconductors as source of strong magnetic fields requires development of high‐performance materials sufficiently reliable with improved thermal transfer ability. An effective approach based primarily on the growth of bulk Y123 single domains comprising a holes‐network to diminish the oxygen diffusion paths is reported here, as well as their progressive annealing at high temperature under oxygen pressure to reduce undue stresses and processing time. Finely, it aims to stimulate the thermal exchange inside the superconductor and compensate for induced magnetic stresses during the field‐trapping process. The approach brings considerable time and energy savings, and turns out to knock down barriers having stymied hitherto the use of Y123 bulk superconductors for engineering applications. Indeed, it enables the achievement of a pore‐free and crack‐free microstructure yielding marked fracture toughness and promoting large size persistent current loops, thereby boosting the trapped field performances. The fostering of the internal thermal exchange leads the maximum trapped field Bmax to shift to higher temperatures by up to 14 K. A value Bmax of 6.34 T is attained at 17 K on ≈16 mm‐diameter reinforced pellet (disk area s = 1.99 cm2), resulting in an outstanding field density Bmax/s=3.19 Tcm−2.

Relevant