Sort by
A genome-wide association study of corneal astigmatism: The CREAM Consortium

To identify genes and genetic markers associated with corneal astigmatism. A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohorts were performed using VEGAS2 and MAGMA software. Additionally, estimates of single nucleotide polymorphism (SNP)-based heritability for corneal and refractive astigmatism and the spherical equivalent were calculated for Europeans using LD score regression. The meta-analysis of all cohorts identified a genome-wide significant locus near the platelet-derived growth factor receptor alpha (PDGFRA) gene: top SNP: rs7673984, odds ratio=1.12 (95% CI:1.08-1.16), p=5.55×10-9. No other genome-wide significant loci were identified in the combined analysis or European/Asian ancestry-specific analyses. Gene-based analysis identified three novel candidate genes for corneal astigmatism in Europeans-claudin-7 (CLDN7), acid phosphatase 2, lysosomal (ACP2), and TNF alpha-induced protein 8 like 3 (TNFAIP8L3). In addition to replicating a previously identified genome-wide significant locus for corneal astigmatism near the PDGFRA gene, gene-based analysis identified three novel candidate genes, CLDN7, ACP2, and TNFAIP8L3, that warrant further investigation to understand their role in the pathogenesis of corneal astigmatism. The much lower number of genetic variants and genes demonstrating an association with corneal astigmatism compared to published spherical equivalent GWAS analyses suggest a greater influence of rare genetic variants, non-additive genetic effects, or environmental factors in the development of astigmatism.

Relevant
Expression pattern in retinal photoreceptors of POMGnT1, a protein involved in muscle-eye-brain disease.

The POMGNT1 gene, encoding protein O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, is associated with muscle-eye-brain disease (MEB) and other dystroglycanopathies. This gene's lack of function or expression causes hypoglycosylation of α-dystroglycan (α-DG) in the muscle and the central nervous system, including the brain and the retina. The ocular symptoms of patients with MEB include retinal degeneration and detachment, glaucoma, and abnormal electroretinogram. Nevertheless, the POMGnT1 expression pattern in the healthy mammalian retina has not yet been investigated. In this work, we address the expression of the POMGNT1 gene in the healthy retina of a variety of mammals and characterize the distribution pattern of this gene in the adult mouse retina and the 661W photoreceptor cell line. Using reverse transcription (RT)-PCR and immunoblotting, we studied POMGNT1 expression at the mRNA and protein levels in various mammalian species, from rodents to humans. Immunofluorescence confocal microscopy analyses were performed to characterize the distribution profile of its protein product in mouse retinal sections and in 661W cultured cells. The intranuclear distribution of POMT1 and POMT2, the two enzymes preceding POMGnT1 in the α-DG O-mannosyl glycosylation pathway, was also analyzed. POMGNT1 mRNA and its encoded protein were expressed in the neural retina of all mammals studied. POMGnT1 was located in the cytoplasmic fraction in the mouse retina and concentrated in the myoid portion of the photoreceptor inner segments, where the protein colocalized with GM130, a Golgi complex marker. The presence of POMGnT1 in the Golgi complex was also evident in 661W cells. However, and in contrast to retinal tissue, POMGnT1 additionally accumulated in the nucleus of the 661W photoreceptors. Colocalization was found within this organelle between POMGnT1 and POMT1/2, the latter associated with euchromatic regions of the nucleus. Our results indicate that POMGnT1 participates not only in the synthesis of O-mannosyl glycans added to α-DG in the Golgi complex but also in the glycosylation of other yet-to-be-identified proteins in the nucleus of mouse photoreceptors.

Relevant
Variable phenotypic expressivity in inbred retinal degeneration mouse lines: A comparative study of C3H/HeOu and FVB/N rd1 mice.

Recent advances in optogenetics and gene therapy have led to promising new treatment strategies for blindness caused by retinal photoreceptor loss. Preclinical studies often rely on the retinal degeneration 1 (rd1 or Pde6b(rd1)) retinitis pigmentosa (RP) mouse model. The rd1 founder mutation is present in more than 100 actively used mouse lines. Since secondary genetic traits are well-known to modify the phenotypic progression of photoreceptor degeneration in animal models and human patients with RP, negligence of the genetic background in the rd1 mouse model is unwarranted. Moreover, the success of various potential therapies, including optogenetic gene therapy and prosthetic implants, depends on the progress of retinal degeneration, which might differ between rd1 mice. To examine the prospect of phenotypic expressivity in the rd1 mouse model, we compared the progress of retinal degeneration in two common rd1 lines, C3H/HeOu and FVB/N. We followed retinal degeneration over 24 weeks in FVB/N, C3H/HeOu, and congenic Pde6b(+) seeing mouse lines, using a range of experimental techniques including extracellular recordings from retinal ganglion cells, PCR quantification of cone opsin and Pde6b transcripts, in vivo flash electroretinogram (ERG), and behavioral optokinetic reflex (OKR) recordings. We demonstrated a substantial difference in the speed of retinal degeneration and accompanying loss of visual function between the two rd1 lines. Photoreceptor degeneration and loss of vision were faster with an earlier onset in the FVB/N mice compared to C3H/HeOu mice, whereas the performance of the Pde6b(+) mice did not differ significantly in any of the tests. By postnatal week 4, the FVB/N mice expressed significantly less cone opsin and Pde6b mRNA and had neither ERG nor OKR responses. At 12 weeks of age, the retinal ganglion cells of the FVB/N mice had lost all light responses. In contrast, 4-week-old C3H/HeOu mice still had ERG and OKR responses, and we still recorded light responses from C3H/HeOu retinal ganglion cells until the age of 24 weeks. These results show that genetic background plays an important role in the rd1 mouse pathology. Analogous to human RP, the mouse genetic background strongly influences the rd1 phenotype. Thus, different rd1 mouse lines may follow different timelines of retinal degeneration, making exact knowledge of genetic background imperative in all studies that use rd1 models.

Relevant
Novel homozygous large deletion including the 5' part of the SPATA7 gene in a consanguineous Israeli Muslim Arab family.

To identify the genetic defect in a consanguineous Israeli Muslim Arab family with juvenile retinitis pigmentosa (RP). DNA samples were collected from the index patient, her parents, her affected sister, and two non-affected siblings. Genome-wide linkage analysis with 250K single nucleotide polymorphism (SNP) arrays was performed using DNA from the two affected patients. Owing to consanguinity in the family, we applied homozygosity mapping to identify the disease-causing gene. The candidate gene SPATA7 was screened for mutations with PCR amplifications and direct Sanger sequencing. Following high-density SNP arrays, we identified several homozygous genomic regions one of which included the SPATA7 gene. Several mutations in SPATA7 have been reported for various forms of retinal dystrophy, including Leber congenital amaurosis (LCA) and juvenile RP. PCR-based sequence content mapping, long-distance PCR amplifications, and subsequent sequencing analysis revealed a homozygous 63.4 kb large deletion that encompasses the 5' part of the SPATA7 gene including exons 1-5. The mutation showed concordant segregation with the phenotype in the family as expected for autosomal recessive mode of inheritance and is consistent with a diagnosis of juvenile RP. We report a novel homozygous large deletion in SPATA7 associated with juvenile RP in a consanguineous Israeli Muslim Arab family. This is the first larger deletion mutation reported for SPATA7.

Relevant
Five novel CNGB3 gene mutations in Polish patients with achromatopsia.

To identify the genetic basis of achromatopsia (ACHM) in four patients from four unrelated Polish families. In this study, we investigated probands with a clinical diagnosis of ACHM. Ophthalmologic examinations, including visual acuity testing, color vision testing, and full-field electroretinography (ERG), were performed in all patients (with the exception of patient p4, who had no ERG). Direct DNA sequencing encompassing the entire coding region of the CNGB3 gene, eight exons of the GNAT2 gene, and exons 5-7 of the CNGA3 gene was performed. Segregation analysis for the presence and independent inheritance of two mutant alleles was performed in the three families available for study. All patients showed typical achromatopsia signs and symptoms. Sequencing helped detect causative changes in the CNGB3 gene in all probands. Eight different mutations were detected in the CNGB3 gene, including five novel mutations: two splice site mutations (c.1579-1G>A and c.494-2A>T), one nonsense substitution (c.1194T>G), and two frame-shift mutations (c.393_394delGCinsTCCTGGTGA and c.1366delC). We also found three mutations: one splice site (c.1578+1G>A) and two frame-shift deletions that had been previously described (c.819_826del and c.1148delC). All respective parents were shown to be heterozygous carriers for the mutation detected in their children. The present study reports five novel mutations in the CNGB3 gene, and thus broadens the spectrum of probably pathogenic mutations associated with ACHM. Together with molecular data, we provide a brief clinical description of the affected individuals.

Relevant
The erythropoietin receptor is not required for the development, function, and aging of rods and cells in the retinal periphery.

Erythropoietin (EPO) was originally described for its antiapoptotic effects on erythroid progenitor cells in bone marrow. In recent years, however, EPO has also been shown to be cytoprotective in several tissues, including the retina. There, exogenous application of EPO was reported to exert neuro- and vasoprotection in several models of retinal injury. EPO and the erythropoietin receptor (EPOR) are expressed in the retina, but the role of endogenous EPO-EPOR signaling in this tissue remains elusive. Here, we investigated the consequences for cell physiology and survival when EpoR is ablated in rod photoreceptors or in the peripheral retina. Two mouse lines were generated harboring a cyclization recombinase (CRE)-mediated knockdown of EpoR in rod photoreceptors (EpoR(flox/flox);Opn-Cre) or in a heterogeneous cell population of the retinal periphery (EpoR(flox/flox);α-Cre). The function of the retina was measured with electroretinography. Retinal morphology was analyzed in tissue sections. The vasculature of the retina was investigated on flatmount preparations, cryosections, and fluorescein angiography. Retinal nuclear layers were isolated by laser capture microdissection to test for EpoR expression. Gene expression analysis was performed with semiquantitative real-time PCR. To test if the absence of EPOR potentially increases retinal susceptibility to hypoxic stress, the knockdown mice were exposed to hypoxia. Newborn mice had lower retinal expression levels of EpoR and soluble EpoR (sEpoR) than the adult wild-type mice. In the adult mice, the EpoR transcripts were elevated in the inner retinal layers, while expression in the photoreceptors was low. CRE-mediated deletion in the EpoR(flox/flox);Opn-Cre mice led to a decrease in EpoR mRNA expression in the outer nuclear layer. A significant decrease in EpoR expression was measured in the retina of the EpoR(flox/flox);α-Cre mice, accompanied by a strong and significant decrease in sEpoR expression. Analysis of the retinal morphology in the two knockdown lines did not reveal any developmental defects or signs of accelerated degeneration in the senescent tissue. Similarly, retinal function was not altered under scotopic and photopic conditions. In addition, EpoR knockdown had no influence on cell viability under acute hypoxic conditions. Retinal angiogenesis and vasculature were normal in the absence of EPOR. However, expression of some EPOR-signaling target genes was significantly altered in the retinas of the EpoR(flox/flox);α-Cre mice. Our data suggest that expression of EPOR in rod photoreceptors, Müller cells, and amacrine, horizontal, and ganglion cells of the peripheral retina is not required for the maturation, function, and survival of these cells in aging tissue. Based on the expression of the EPOR-signaling target genes, we postulate that expression of soluble EPOR in the retina may modulate endogenous EPO-EPOR signaling.

Relevant
Proapoptotic and survival signaling in the neuroretina at early stages of diabetic retinopathy.

Diabetic retinopathy (DR) has been classically considered a microcirculatory disease of the retina. However, before any microcirculatory abnormalities can be detected in ophthalmoscopic examination, retinal neurodegeneration is already present. The aim of the study was to analyze proapoptotic and survival signaling in the neuroretinas of diabetic patients at early stages of DR. The retinas from five diabetic donors at early stages of DR were compared with the retinas from five nondiabetic donors matched by age. Glial activation was evaluated by assessing glial fibrillar acidic protein (GFAP) with western blot and immunofluorescence. Proapoptotic molecules (FasL, procaspase-8, active caspase-8, total Bid, truncated Bid, Bim, and active caspase-3), as well as antiapoptotic markers (FLIP, BclxL, and cyclooxygenase-2 [COX-2]) were assessed with western blot. GFAP and proapoptotic molecules (FasL, active caspase-8, truncated Bid (t-Bid), Bim, and active caspase-3) were significantly increased in the neuroretinas from diabetic patients compared to the control neuroretinas. In contrast, no significant differences in the expression of the antiapoptotic markers were found. An imbalance between proapoptotic and survival signaling was found in diabetic neuroretinas. Our results reveal key mechanistic pathways involved in the neurodegenerative process that occurs in the early stages of DR.

Relevant
The Usher gene cadherin 23 is expressed in the zebrafish brain and a subset of retinal amacrine cells.

To characterize the expression pattern of cadherin 23 (cdh23) in the zebrafish visual system, and to determine whether zebrafish cdh23 mutants have retinal defects similar to those present in the human disease Usher syndrome 1D. In situ hybridization and immunohistochemistry were used to characterize cdh23 expression in the zebrafish, and to evaluate cdh23 mutants for retinal degeneration. Visual function was assessed by measurement of the optokinetic response in cdh23 siblings and mutants. We detected cdh23 mRNA expression in multiple nuclei of both the developing and adult central nervous system. In the retina, cdh23 mRNA was expressed in a small subset of amacrine cells, beginning at 70 h postfertilization and continuing through adulthood. No expression was detected in photoreceptors. The cdh23-positive population of amacrine cells was GABAergic. Examination of homozygous larvae expressing two different mutant alleles of cdh23-cdh23(tc317e) or cdh23(tj264a)-revealed no detectable morphological retinal defects or degeneration. In addition, the optokinetic response to moving gratings of varied contrast or spatial frequency was normal in both mutants. Unlike in other vertebrates, cdh23 is not detectable in zebrafish photoreceptors. Instead, cdh23 is expressed by a small subset of GABAergic amacrine cells. Moreover, larvae with mutations in cdh23 do not exhibit any signs of gross retinal degeneration or dysfunction. The role played by cdh23 in human retinal function is likely performed by either a different gene or an unidentified cdh23 splice variant in the retina that is not affected by the above mutations.

Relevant