Sort by
Conserved regulatory motifs in the juxtamembrane domain and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase domain.

MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase ⍺C-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a β5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.

Open Access
Relevant
A proximity proteomics pipeline with improved reproducibility and throughput.

Proximity labeling (PL) through biotinylation coupled with mass spectrometry (MS) has emerged as a powerful technique for capturing spatial proteomes within living cells. Large-scale sample processing for proximity proteomics requires a workflow that minimizes hands-on time while enhancing quantitative reproducibility. Here, we present a scalable PL pipeline integrating automated enrichment of biotinylated proteins in a 96-well plate format. By combining this pipeline with an optimized quantitative MS acquisition method based on data-independent acquisition (DIA), we not only significantly increased sample throughput but also improved the reproducibility of protein identification and quantification. We applied this pipeline to delineate subcellular proteomes across various cellular compartments, including endosomes, late endosomes/lysosomes, the Golgi apparatus, and the plasma membrane. Moreover, employing 5HT2A serotonin receptor as a model, we investigated temporal changes of proximal interaction networks induced by the receptor's activation with serotonin. Finally, to demonstrate the applicability of our PL pipeline across multiple experimental conditions, we further modified the PL pipeline for reduced sample input amounts to accommodate CRISPR-based gene knockout, and assessed the dynamics of the 5HT2A network in response to the perturbation of selected proximal interactors. Importantly, the presented PL approach is universally applicable to PL proteomics using biotinylation-based PL enzymes, increasing both throughput and reproducibility of standard protocols.

Open Access
Relevant
Predicted serotype-specific effectiveness of pneumococcal conjugate vaccines V114 and PCV20 against invasive pneumococcal disease in children

ABSTRACT Background Next-generation, higher-valency pneumococcal conjugate vaccines (PCVs), 15-valent PCV V114 and 20-valent PCV (PCV20), have been assessed by comparing their immune responses across serotypes shared with the 13-valent PCV (PCV13). Without efficacy or real-world vaccine effectiveness (VE) it becomes important to relate IgG titers to VE to aid in the interpretation of the immune response elicited by V114 and PCV20. Methods We estimated the protective antibody concentrations for each serotype in 7-valent PCV (PCV7) and PCV13 which were then used to predict the serotype-specific VE for each PCV7 and PCV13 non PCV7 serotype present in V114 and PCV20. Results The predicted effectiveness of V114 was comparable to PCV7 and PCV13 for 11 of the 13 shared serotypes (1, 4, 5, 6B, 7F, 9 V, 14, 18C, 19A, 19F, and 23F), with improved effectiveness against serotype 3 and decreased effectiveness against serotype 6A. PCV20 had predicted effectiveness comparable to PCV7 and PCV13 for 7 of the 13 shared serotypes (5, 6A, 7F, 9 V, 18C, 19F, and 23F), with decreased effectiveness against the remaining serotypes (1, 3, 4, 6B, 14, and 19A). Conclusions Prediction of serotype-specific VE values suggests that V114 retains greater effectiveness than PCV20 toward most serotypes present in PCV7 and PCV13.

Open Access
Relevant
SlyB encapsulates outer membrane proteins in stress-induced lipid nanodomains.

The outer membrane in Gram-negative bacteria consists of an asymmetric phospholipid-lipopolysaccharide bilayer that is densely packed with outer-membrane β-barrel proteins (OMPs) and lipoproteins1. The architecture and composition of this bilayer is closely monitored and is essential to cell integrity and survival2-4. Here we find that SlyB, a lipoprotein in the PhoPQ stress regulon, forms stable stress-induced complexes with the outer-membrane proteome. SlyB comprises a 10 kDa periplasmic β-sandwich domain and a glycine zipper domain that forms a transmembrane α-helical hairpin with discrete phospholipid- and lipopolysaccharide-binding sites. After loss in lipid asymmetry, SlyB oligomerizes into ring-shaped transmembrane complexes that encapsulate β-barrel proteins into lipid nanodomains of variable size. We find that the formation of SlyB nanodomains is essential during lipopolysaccharide destabilization by antimicrobial peptides or acute cation shortage, conditions that result in a loss of OMPs and compromised outer-membrane barrier function in the absence of a functional SlyB. Our data reveal that SlyB is a compartmentalizing transmembrane guard protein that is involved in cell-envelope proteostasis and integrity, and suggest that SlyB represents a larger family of broadly conserved lipoproteins with 2TM glycine zipper domains with the ability to form lipid nanodomains.

Relevant
Beyond the kidney: extra-renal manifestations of monogenic nephrolithiasis and their significance.

The objective of this study was to explore the frequency of occurrence of extra-renal manifestations associated with monogenic nephrolithiasis. A literature review was conducted to identify genes that are monogenic causes of nephrolithiasis. The Online Mendelian Inheritance in Man (OMIM) database was used to identify associated diseases and their properties. Disease phenotypes were ascertained using OMIM clinical synopses and sorted into 24 different phenotype categories as classified in OMIM. Disease phenotypes caused by the same gene were merged into a phenotypic profile of a gene (PPG) such that one PPG encompasses all related disease phenotypes for a specific gene. The total number of PPGs involving each phenotype category was measured, and the median phenotype category was determined. Phenotype categories were classified as overrepresented or underrepresented if the number of PPGs involving them was higher or lower than the median, respectively. Chi-square test was conducted to determine whether the number of PPGs affecting a given category significantly deviated from the median. Fifty-five genes were identified as monogenic causes of nephrolithiasis. A total of six significantly overrepresented and three significantly underrepresented phenotype categories were identified (p < 0.05). Four phenotypic categories (growth, neurological, skeletal, and abdomen/gastrointestinal) are significantly overrepresented after Bonferroni correction for multiple comparisons (p < 0.002). Among all phenotypes, impaired growth is the most common manifestation. Recognizing the extra-renal manifestations associated with monogenic causes of kidney stones is critical for earlier diagnosis and optimal care in patients.

Open Access
Relevant
Multimodal Imaging Reveals that Sustained Inhibition of HIF-Prolyl Hydroxylases Induces Opposing Effects on Right and Left Ventricular Function in Healthy Rats.

Hypoxia-inducible factor (HIF) drives transcription of critical hypoxia response genes, increasing the production of red blood cells in low oxygen conditions. In the absence of hypoxia, HIF is degraded by prolyl hydroxylases (HIF-PHs). Pharmacological HIF-PH inhibition stabilizes HIF and is being studied as a treatment for anemia. However, like sustained hypoxia, HIF-PH inhibition may increase pulmonary arterial pressure leading to right ventricular hypertrophy. The aim of this study was to assess the cardiac effects of sustained pharmacological HIF-PH inhibition using multimodal imaging, blood analysis, and histology. Rats were dosed daily with a pan HIF-PH inhibitor or vehicle for 4weeks followed by a 2-week washout period and underwent longitudinal magnetic resonance imaging (MRI) and echocardiography to simultaneously assess RV and LV function. Blood samples from weeks four and six were analyzed to determine red blood cell composition. Histology was performed on the cardiac tissue from a subset of rats at weeks four and six to assess structural effects. Imaging revealed that RV ejection fraction was reduced in animals receiving HIF-PH inhibitor and resulted in RV hypertrophy. Interestingly, HIF-PH inhibition had the opposite effect on the left ventricle (LV), increasing contractility measured by LV ejection fraction. LV effects were reversed by week six, while RV effects (functional and structural) were sustained. These opposing cardiac effects of HIF-PH inhibition warrant further study to both understand the potential negative effects on RV structure and function and investigate the therapeutic potential of increased LV contractility for conditions like heart failure.

Relevant
Development of Corynebacterium glutamicum as a monoterpene production platform

Monoterpenes are commonly known for their role in the flavors and fragrances industry and are also gaining attention for other uses like insect repellant and as potential renewable fuels for aviation. Corynebacterium glutamicum, a Generally Recognized as Safe microbe, has been a choice organism in industry for the annual million ton-scale bioproduction of amino acids for more than 50 years; however, efforts to produce monoterpenes in C. glutamicum have remained relatively limited. In this study, we report a further expansion of the C. glutamicum biosynthetic repertoire through the development and optimization of a mevalonate-based monoterpene platform. In the course of our plasmid design iterations, we increased flux through the mevalonate-based bypass pathway, measuring isoprenol production as a proxy for monoterpene precursor abundance and demonstrating the highest reported titers in C. glutamicum to date at 1504.6 mg/L. Our designs also evaluated the effects of backbone, promoter, and GPP synthase homolog origin on monoterpene product titers. Monoterpene production was further improved by disrupting competing pathways for isoprenoid precursor supply and by implementing a biphasic production system to prevent volatilization. With this platform, we achieved 321.1 mg/L of geranoids, 723.6 mg/L of 1,8-cineole, and 227.8 mg/L of linalool. Furthermore, we determined that C. glutamicum first oxidizes geraniol through an aldehyde intermediate before it is asymmetrically reduced to citronellol. Additionally, we demonstrate that the aldehyde reductase, AdhC, possesses additional substrate promiscuity for acyclic monoterpene aldehydes.

Open Access
Relevant