Sort by
Theory of high-temperature superfluorescence in hybrid perovskite thin films.

The recent discovery of high-temperature superfluorescence in hybrid perovskite thin films has opened new possibilities for harnessing macroscopic quantum phenomena in nanotechnology. This study aimed to elucidate the mechanism that enables high-temperature superfluorescence in these systems. The proposed model describes a quasi-2D Wannier exciton in a thin film that interacts with phonons via the longitudinal optical phonon-exciton Fröhlich interaction. We show that the super-radiant properties of the coherent state in hybrid perovskites are stable against perturbations caused by the longitudinal optical phonon-exciton Fröhlich interaction. Using the multiconfiguration Hartree approach, we derive semiclassical equations of motion for a single-exciton wavefunction, where the vibrational degrees of freedom interact with the Wannier exciton through a mean-field Hartree term. Super-radiance is effectively described by a non-Hermitian term in the Hamiltonian. The analysis was then extended to multiple excited states using the semiclassical Hamiltonian as the basic model. We demonstrate that the ground state of the model exciton Hamiltonian with long-range interactions is a symmetric Dicke super-radiant state, where the Fröhlich interaction is nullified. The additional density matrix-based consideration draws an analogy between this system and stable systems, where the conservation laws determine the nullification of the constant (momentum-independent) decay rate part. In the exciton-phonon system, nullification is associated with the absence of a momentum-independent component in the Wannier exciton-phonon interaction coupling function.

Just Published
Relevant
The influence of the bounding surface on the structural ordering of short chains of oligoetherimides.

In this study, we have conducted a comparative analysis of the structural ordering of short oligoetherimide chains (dimers) near the bounding surface, depending on the structure of that surface. In order to clarify the possibility of oligoetherimide ordering along the symmetry axes of graphene, two types of bounding surfaces were considered: graphene, with a regular discrete position of interaction centers (carbon atoms), and a smooth, structureless impermeable wall. The chemical structures of the considered dimers consist of two repeating units of BPDA-P3, ODPA-P3, or aBPDA-P3 thermoplastic polyetherimides. Using all-atom molecular dynamics simulations, the process of structural ordering of the dimers near the surface of the graphene or wall was established. The ODPA-P3 and BPDA-P3 dimers form an ordered state near the graphene surface, while the aBPDA-P3 dimers do not demonstrate structural ordering. The simulation results confirmed that the ordering direction of the BPDA-P3 and ODPA-P3 dimers near the graphene surface is chosen randomly. Comparison of the oligoetherimide structure formed near the attracting wall without a symmetrical location of the interaction centers shows the similarity of the ordering of dimers near the graphene surface and the wall. As in the case of the graphene surface, the ordering of oligoetherimide molecules near the structureless wall demonstrates one direction of ordering. Therefore, we confirmed that the key factor for the onset of ordering is the presence of a confining surface, rather than the symmetrical arrangement of interaction centers in the substrate structure.

Just Published
Relevant