Sort by
Effect of fiber type on performance of fiber reinforced concrete applied for hydraulic construction

This study aims at evaluating effect of fiber types on comprehensive property of a practical fiber reinforced concrete (FRC) applied for hydraulic construction. Three fiber types including polypropylene, glass, and steel fiber were used to replace concrete volume at 0.3 vol.%. Experimental results illustrated that when compared with the reference concrete, the fiber reinforced concretes with steel or glass fiber had comparable or slight changes on the fresh properties. But, addition of polypropylene fiber induced the fresh FRC with decreased slump flow and significantly increased air entrained volume. Although using various types of fibers led to unbeneficial effect on the compressive strengths of the FRCs, presence of fiber induced the FRCs with significant enhancements on the flexural strength, drying shrinkage, and water absorption and slightly increased UPV at 28 days. In this study, steel fiber was considered as the best choice for improving the mechanical properties of the hardened concrete while, as the volume stability and durability performance of the concrete were primarily considered, polypropylene seemed to be a preferable selection. According to standardized requirements, all concrete proportions were in classification of M40(28)-M45(28), being assigned to concretes suitably applied for widespread on-site hydraulic constructions.

Open Access
Relevant