Sort by
Dysregulation of Gut Microbiota-Derived Neuromodulatory Amino Acid Metabolism in Human Immunodeficiency Virus-Associated Neurocognitive Disorder: An Integrative Metagenomic and Metabolomic Analysis.

Although accumulating evidence implicating altered gut microbiota in human immunodeficiency virus (HIV) infection and neurodegenerative disorders; however, the association between dysbiosis of the gut microbiota and metabolites in the pathogenesis of HIV-associated neurocognitive disorder (HAND) remains unclear. Fecal and plasma samples were obtained from 3 cohorts (HAND, HIV-non-HAND, and healthy controls), metagenomic analysis and metabolomic profiling were performed to investigate alterations in the gut microbial composition and circulating metabolites in HAND. The gut microbiota of people living with HIV (PLWH) had an increased relative abundance of Prevotella and a decreased relative abundance of Bacteroides. In contrast, Prevotella and Megamonas were substantially decreased, and Bacteroides and Phocaeicola were increased in HAND patients. Moreover, untargeted metabolomics identified several neurotransmitters and certain amino acids associated with neuromodulation, and the differential metabolic pathways of amino acids associated with neurocognition were depleted in HAND patients. Notably, most neuromodulatory metabolites are associated with an altered abundance of specific gut bacteria. Our findings provide new insights into the intricate interplay between the gut and microbiome-brain axis in the pathogenesis of HAND, highlighting the potential for developing novel therapeutic strategies that specifically target the gut microbiota. ANN NEUROL 2024.

Relevant
Nomogram for preoperative estimation of microvascular invasion risk in hepatocellular carcinoma

Microvascular invasion (MVI) is an adverse prognostic indicator of tumor recurrence after surgery for hepatocellular carcinoma (HCC). Therefore, developing a nomogram for estimating the presence of MVI before liver resection is necessary. We retrospectively included 260 patients with pathologically confirmed HCC at the Fifth Medical Center of Chinese PLA General Hospital between January 2021 and April 2024. The patients were randomly divided into a training cohort (n = 182) for nomogram development, and a validation cohort (n = 78) to confirm the performance of the model (7:3 ratio). Significant clinical variables associated with MVI were then incorporated into the predictive nomogram using both univariate and multivariate logistic analyses. The predictive performance of the nomogram was assessed based on its discrimination, calibration, and clinical utility. Serum carnosine dipeptidase 1 ([CNDP1] OR 2.973; 95 % CI 1.167–7.575; p = 0.022), cirrhosis (OR 8.911; 95 % CI 1.922–41.318; p = 0.005), multiple tumors (OR 4.095; 95 % CI 1.374–12.205; p = 0.011), and tumor diameter ≥3 cm (OR 4.408; 95 % CI 1.780–10.919; p = 0.001) were independent predictors of MVI. Performance of the nomogram based on serum CNDP1, cirrhosis, number of tumors and tumor diameter was achieved with a concordance index of 0.833 (95 % CI 0.771–0.894) and 0.821 (95 % CI 0.720–0.922) in the training and validation cohorts, respectively. It fitted well in the calibration curves, and the decision curve analysis further confirmed its clinical usefulness. The nomogram, incorporating significant clinical variables and imaging features, successfully predicted the personalized risk of MVI in HCC preoperatively.

Open Access
Relevant
Immune checkpoint inhibitors and anti-vascular endothelial growth factor antibody/tyrosine kinase inhibitors with or without transarterial chemoembolization as first-line treatment for advanced hepatocellular carcinoma (CHANCE2201): a target trial emulation study

The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P<0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P<0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P<0.0001; 47.3% vs 29.7%, P<0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

Relevant
Clinicopathologic factors correlated with lymph node metastasis in gastric cancer: a retrospective cohort study involving 5606 patients

BackgroundThe identification of risk factors associated with lymph node metastasis (LNM) in gastric cancer will establish a crucial foundation for the implementation of endoscopic operation and multidisciplinary treatment program. Methods5606 gastric cancer patients with comprehensive clinicopathological data were enrolled through systematic searching and rigorous screening. Of the 5606 patients, 1438 were diagnosed with early gastric cancer (EGC), which would be utilized for further analysis. Subsequently, univariate and multivariate logistic regression analyses were conducted to identified the risk factors. ResultsThe rates of LNM in T1a, T1b, T2, T3, T4a, and T4b stage gastric cancer were 7.0%, 19.4%, 48.4%, 77.1%, 83.8%, and 89.6% respectively. Female [odds ratio (OR)=1.559, P=0.032], lower tumor location (OR=1.773, P=0.023), tumor size >2cm (OR=2.007, P<0.001), mixed (OR=2.371, P=0.001) and undifferentiated histological types (OR=2.952, P<0.001), T1b stage (OR=2.041, P<0.001), presence of ulceration (OR=1.758, P=0.027), and lymphovascular invasion (LVI) (OR=5.722, P<0.001) were identified as independent risk factors for LNM in EGC. A nomogram was constructed using appropriate predictors to preoperatively predict the risk of LNM in EGC cases. ConclusionsThis study identified the clinicopathological factors associated with LNM in EGC and developed a prediction model, thereby facilitating the integration of diverse treatment modalities in managing EGC patients.

Relevant
Deep learning system for screening AIDS-related cytomegalovirus retinitis with ultra-wide-field fundus images

BackgroundOphthalmological screening for cytomegalovirus retinitis (CMVR) for HIV/AIDS patients is important to prevent lifelong blindness. Previous studies have shown good properties of automated CMVR screening using digital fundus images. However, the application of a deep learning (DL) system to CMVR with ultra-wide-field (UWF) fundus images has not been studied, and the feasibility and efficiency of this method are uncertain. MethodsIn this study, we developed, internally validated, externally validated, and prospectively validated a DL system to detect AIDS-related from UWF fundus images from different clinical datasets. We independently used the InceptionResnetV2 network to develop and internally validate a DL system for identifying active CMVR, inactive CMVR, and non-CMVR in 6960 UWF fundus images from 862 AIDS patients and validated the system in a prospective and an external validation data set using the area under the curve (AUC), accuracy, sensitivity, and specificity. A heat map identified the most important area (lesions) used by the DL system for differentiating CMVR. ResultsThe DL system showed AUCs of 0.945 (95 % confidence interval [CI]: 0.929, 0.962), 0.964 (95 % CI: 0.870, 0.999) and 0.968 (95 % CI: 0.860, 1.000) for detecting active CMVR from non-CMVR and 0.923 (95 % CI: 0.908, 0.938), 0.902 (0.857, 0.948) and 0.884 (0.851, 0.917) for detecting active CMVR from non-CMVR in the internal cross-validation, external validation, and prospective validation, respectively. Deep learning performed promisingly in screening CMVR. It also showed the ability to differentiate active CMVR from non-CMVR and inactive CMVR as well as to identify active CMVR and inactive CMVR from non-CMVR (all AUCs in the three independent data sets >0.900). The heat maps successfully highlighted lesion locations. ConclusionsOur UWF fundus image-based DL system showed reliable performance for screening AIDS-related CMVR showing its potential for screening CMVR in HIV/AIDS patients, especially in the absence of ophthalmic resources.

Open Access
Relevant
Inflammation activity affects liver stiffness measurement by magnetic resonance elastography in MASLD

BackgroundMagnetic resonance elastography (MRE) is recognized as the most precise imaging technology for assessing liver fibrosis in individuals with metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to investigate the clinical factors and pathological characteristics that may impact LSM in MASLD patients. MethodsThis cross-sectional study recruited 124 patients who concurrently performed MRE, MRI-PDFF, and biopsy-proven MASLD. Linear regression models, Spearman's correlation, and subgroup analysis were employed to identify the variables affecting LSM. ResultsThe AUROC (95 % CI) of MRE for diagnosing fibrosis stage ≥ 1, 2, 3, and 4 was 0.80 (0.70–0.90), 0.76 (0.66–0.85), 0.92 (0.86–0.99), and 0.99 (0.99–1.00), with corresponding cutoffs of 2.56, 2.88, 3.35, and 4.76 kPa, respectively. Multivariate analyses revealed that AST was the only independent clinical variable significantly correlated with LSM. Furthermore, LSM exhibited a notable association with the grade of lobular inflammation and hepatocellular ballooning. Subgroup analysis showed that when AST ≥ 2 ULN or inflammation grade ≥ 2, LSM of patients with early fibrosis stages showed a slight but significant increase. ConclusionMRE demonstrates significant diagnostic accuracy in predicting liver fibrosis stages for MASLD patients, especially for advanced liver fibrosis and cirrhosis. However, elevated AST and the severity of liver inflammation may impact its accuracy in staging early liver fibrosis.

Relevant