Sort by
Potential connectivity among spatially distinct management zones for Bonefish (Albula vulpes) via larval dispersal

The localized scale of most fisheries management does not account for potential regional connectivity, particularly for fish species with prolonged planktonic larval durations (PLD). Although bonefish (Albula vulpes) inhabits shallow coastal habitats from juvenile through adult life stages, it is a strong candidate for population connectivity via larval dispersal with a PLD of 41–71 days. To address this knowledge gap, surface trajectories of particles (“virtual larvae”) released from 26 known and predicted spawning sites of bonefish around the Caribbean Sea, Florida, and Bahamas were simulated for 2009–2015 using a realistic ocean circulation hindcast model coupled with an online particle tracking simulator to study larval transport variations. At each site, 100 surface particles were released twice per month (at full and new moons) from October to April in each year and tracked for 53 days. We then estimated the likelihood that management regions would rely upon larval retention versus larval dispersal from other management zones. Overall, separately managed areas are likely to be connected via larval dispersal rather than entirely self-recruiting. Significant temporal differences in particle dispersal found for new and full moon phases, and between winter and spring, highlight that it is vital to resolve multiscale temporal and spatial variability in circulation transport when studying larval transport and connectivity. Results underscore the need to include the likelihood of population connectivity in fisheries management and conservation strategies, and to ensure that the ontogenetic habitat requirements of bonefish are properly managed at a regional scale.

Relevant
Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems.

The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.

Open Access
Relevant
Megaregions among the large marine ecosystems of the Americas

We organized environmental observations (Sea Surface Temperature, chlorophyll concentration, and primary productivity) and biological diversity indices based on reconstructed fisheries landings obtained from the Sea Around Us project to address two objectives: 1) to understand whether adjacent Large Marine Ecosystems (LMEs) of the Americas form megaregions for assemblages of commercially-valuable fish; and 2) to assess changes in the diversity of fisheries landings in LMEs of the Americas over time (1982 to 2010). To test for similarities between LMEs, we used the seascape approach of unsupervised clustering of annual mean environmental observations and fisheries-derived diversity indices. Beta-diversity estimates based on fisheries landings were used to evaluate the degree to which species spanned LMEs. Temporal trends were computed for each dataset by linear least-squares. Three megaregions emerged when considering similarities in species composition of fisheries landings, fisheries-derived diversity indices, and characteristic environmental conditions among LMEs. These include (A) the South Brazil Shelf, East Brazil Shelf, and North Brazil Shelf LMEs, (B) the Gulf of Mexico and Southeast U.S. Continental Shelf LMEs, and (C) the Northeast U.S. Continental Shelf, Scotian Shelf, and Newfoundland-Labrador Shelf LMEs. No megaregions emerged for the Pacific Ocean. While there were some shared species assemblages between the California Current and the Gulf of Alaska, the Gulf of California, and the Pacific Central-American Coastal LMEs, these showed different average environmental conditions and fishery-derived diversity indices, so they did not cluster as a megaregion. In the Pacific Ocean, the high dissimilarity in the fisheries is in part related to different top-down pressures and strong regional differences in oceanographic properties, including upwelling and impacts of El-Niño Southern Oscillation events. Overall, between 1982 and 2010, seven LMEs diversified their fisheries (Pacific Central-America Coastal, Patagonian Shelf, South Brazil Shelf, East Brazil Shelf, North Brazil Shelf, Southeast U.S. Continental Shelf, and Newfoundland-Labrador Shelf). This may be due to a number of reasons including decreasing fishing pressure but expansion of target stocks due to management quotas, changes in regional markets, competition, effort, or a decrease in particular target stocks. Three LMEs showed increasingly less diversified fisheries, namely the California Current, the Northeast U.S. Continental Shelf, and the Caribbean Sea LMEs. While in some cases this may be related to historical overfishing, such as in the Northeast U.S. Continental Shelf LME, the California Current LME has been subjected to strong and conservative management practices. The Caribbean Sea LME was likely subjected to heavy fishing at a time of rapid environmental change.

Open Access
Relevant
Projections of future habitat use by Atlantic bluefin tuna: mechanistic vs. correlative distribution models

Climate change is likely to drive complex shifts in the distribution and ecology of marine species. Projections of future changes may vary, however, depending on the biological impact model used. In this study, we compared a correlative species distribution model and a simple mechanistic oxygen balance model for Atlantic bluefin tuna (Thunnus thynnus: ABFT) in the North Atlantic Ocean. Both models gave similar results for the recent historical time period, and suggested that ABFT generally occupy favourable metabolic habitats. Projections from an earth system model showed largely temperature-induced reductions in ABFT habitat in the tropical and sub-tropical Atlantic by 2100. However, the oxygen balance model showed more optimistic results in parts of the subpolar North Atlantic. This was partially due to an inherent ability to extrapolate beyond conditions currently encountered by pelagic longline fishing fleets. Projections included considerable uncertainty due to the simplicity of the biological models, and the coarse spatiotemporal resolution of the analyses. Despite these limitations, our results suggest that climate change is likely to increase metabolic stress on ABFT in sub-tropical habitats, but may improve habitat suitability in subpolar habitats, with implications for spawning and migratory behaviours, and availability to fishing fleets.

Relevant
DNA capture reveals transoceanic gene flow in endangered river sharks

For over a hundred years, the "river sharks" of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks.

Open Access
Relevant
Global distribution of fin whales<scp><i>B</i></scp><i>alaenoptera physalus</i>in the post‐whaling era (1980–2012)

AbstractThe global distribution of fin whalesBalaenoptera physalusis not fully understood. Existing maps can be divided into two conflicting categories: one showing a continuous global distribution and another showing an equatorial hiatus (gap in the global distribution) between approximately 20°Nand 20°S. Questions also remain about the seasonal distribution of fin whales.To explore the suggested equatorial hiatus and seasonal distribution patterns, we synthesised information on fin whale distribution in the post‐whaling era (1980–2012) from published literature, publicly available reports and studies conducted by various organisations. We created four seasonally stratified maps showing line‐transect density estimates, line‐transect survey effort, acoustic detections, and sightings.An equatorial hiatus in the global distribution of fin whales during the post‐whaling era is supported by numerous line‐transect surveys and by the rarity of equatorial acoustic detections and sightings, and corroborated by whaling era reports, morphological analyses, and genetic analyses.Our synthesis of post‐whaling era data is consistent with results from other studies indicating that fin whales are more abundant at higher latitudes during warmer months and more abundant at lower latitudes (although these latitudes are still greater than 20°) during colder months. However, our synthesis and results from other studies also indicate that some fin whales in both hemispheres remain in higher latitudes (50°–60° north or south) during colder months and in lower latitudes (to approximately 20°–30° north or south) during warmer months, indicating that seasonal fin whale movements differ from the seasonal migrations of blue whalesBalaenoptera musculusand humpback whalesMegaptera novaeangliae.Our maps of global fin whale distribution provide a comprehensive picture of current knowledge and highlight important geographical and temporal data gaps. Surveys should be conducted within the identified data gaps in order to increase fine‐scale spatial and temporal knowledge of distribution patterns, improve fin whale taxonomy, and identify areas of elevated fin whale densities that may require management of threats, such as ship strikes.

Relevant
Potential impact of climate change on the Intra-Americas Sea: Part 2. Implications for Atlantic bluefin tuna and skipjack tuna adult and larval habitats

Increasing water temperatures due to climate change will likely have significant impacts on distributions and life histories of Atlantic tunas. In this study, we combined predictive habitat models with a downscaled climate model to examine potential impacts on adults and larvae of Atlantic bluefin tuna (Thunnus thynnus) and skipjack tuna (Katsuwonus pelamis) in the Intra-Americas Sea (IAS). An additional downscaled model covering the 20th century was used to compare habitat fluctuations from natural variability to predicted future changes under two climate change scenarios: Representative Concentration Pathway (RCP) 4.5 (medium–low) and RCP 8.5 (high). Results showed marked temperature-induced habitat losses for both adult and larval bluefin tuna on their northern Gulf of Mexico spawning grounds. In contrast, habitat suitability for skipjack tuna increased as temperatures warmed. Model error was highest for the two skipjack tuna models, particularly at higher temperatures. This work suggests that influences of climate change on highly migratory Atlantic tuna species are likely to be substantial, but strongly species-specific. While impacts on fish populations remain uncertain, these changes in habitat suitability will likely alter the spatial and temporal availability of species to fishing fleets, and challenge equilibrium assumptions of environmental stability, upon which fisheries management benchmarks are based.

Relevant
Potential impact of climate change on the Intra-Americas Sea: Part-1. A dynamic downscaling of the CMIP5 model projections

This study examines the potential impact of anthropogenic greenhouse warming on the Intra-Americas Sea (IAS, Caribbean Sea and Gulf of Mexico) by downscaling the Coupled Model Intercomparison Project phase-5 (CMIP5) model simulations under historical and two future emission scenarios using an eddy-resolving resolution regional ocean model. The simulated volume transport by the western boundary current system in the IAS, including the Caribbean Current, Yucatan Current and Loop Current (LC), is reduced by 20-25% during the 21st century, consistent with a similar rate of reduction in the Atlantic Meridional Overturning Circulation (AMOC). The effect of the LC in the present climate is to warm the Gulf of Mexico (GoM). Therefore, the reduced LC and the associated weakening of the warm transient LC eddies have a cooling impact in the GoM, particularly during boreal spring in the northern deep basin, in agreement with an earlier dynamic downscaling study. In contrast to the reduced warming in the northern deep GoM, the downscaled model predicts an intense warming in the shallow (≤200m) northeastern shelf of the GoM especially during boreal summer since there is no effective mechanism to dissipate the increased surface heating. Potential implications of the regionally distinctive warming trend pattern in the GoM on the marine ecosystems and hurricane intensifications during landfall are discussed. This study also explores the effects of 20th century warming and climate variability in the IAS using the regional ocean model forced with observed surface flux fields. The main modes of sea surface temperature variability in the IAS are linked to the Atlantic Multidecadal Oscillation and a meridional dipole pattern between the GoM and Caribbean Sea. It is also shown that variability of the IAS western boundary current system in the 20th century is largely driven by wind stress curl in the Sverdrup interior and the AMOC.

Relevant
Variability of the Deepwater Horizon Surface Oil Spill Extent and Its Relationship to Varying Ocean Currents and Extreme Weather Conditions

Satellite observations and their derived products played a key role during the Deepwater Horizon oil spill monitoring efforts in the Gulf of Mexico in April–July 2010. These observations were sometimes the only source of synoptic information available to monitor and analyse several critical parameters on a daily basis. These products also complemented in situ observations and provided data to assimilate into or validate model. The ocean surface dynamics in the Gulf of Mexico are dominated by strong seasonal cycles in surface temperature and mixing due to convective and storm energy, and by major currents that include the Loop Current and its associated rings. Shelf processes are also strongly influenced by seasonal river discharge, winds, and storms. Satellite observations were used to determine that the Loop Current exhibited a very northern excursion (to approximately 28\(^{\circ }\)N) during the month of May, placing the core of this current and of the ring that it later shed at approximately 150 km south of the oil spill site. Knowledge gained about the Gulf of Mexico since the 1980s using a wide range of satellite observations helped understand the timing and process of separation of an anticyclonic ring from the Loop Current during this time. The surface extent of the oil spill varied largely based upon several factors, such as the rate of oil flowing from the well, clean up and recovery efforts, and biological, chemical, and physical processes. Satellite observations from active and passive radars, as well as from visible and infrared sensors were used to determine the surface extent of the oil spill. Results indicate that the maximum and total cumulative areal extent were approximately 45 \(\times \) 10\(^3\) km\(^2\) and 130 \(\times \) 10\(^3\) km\(^2\), respectively. The largest increase of surface oil occurred between April 22 and May 22, at an average rate of 1.3 \(\times \) 10\(^3\) km\(^2\) per day. The largest decrease in the extent of surface oil started on June 26, at an average rate of 4.4 \(\times \) 10\(^3\) km\(^2\) per day. Surface oil areas larger than approximately 40 \(\times \) 10\(^3\) km\(^2\) occurred during several periods between late May and the end of June. The southernmost surface oil extent reached approximately 85\(^{\circ }\)W 27\(^{\circ }\)N during the beginning of June. Results obtained indicate that surface currents may have partly controlled the southern and eastern extent of the surface oil during May and June, while intense southeast winds associated with Hurricane Alex caused a reduction of the surface oil extent at the end of June and beginning of July, as oil was driven onshore and mixed underwater. Given the suite of factors determining the variability of the oil spill extent at ocean surface, work presented here shows the importance of data analyses to compare against assessments made to evaluate numerical models.

Relevant
Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico

This work characterizes patterns of temporal variability in surface waters of the central Gulf of Mexico. We examine remote-sensing based observations of sea surface temperature (SST), wind speed, sea surface height anomaly (SSHA), chlorophyll-a concentration (Chl-a) and Net Primary Production (NPP), along with model predictions of mixed layer depth (MLD), to determine seasonal changes and long-term trends in the central Gulf of Mexico between the early 1980s and 2012. Specifically, we examine variability in four quadrants of the Gulf of Mexico (water depth >1000m). All variables show strong seasonality. Chl-a and NPP show positive anomalies in response to short-term increases in wind speed and to cold temperature events. The depth of the mixed layer (MLD) directly and significantly affects primary productivity throughout the region. This relationship is sufficiently robust to enable real-time estimates of MLD based on satellite-based estimates of NPP. Over the past 15–20years, SST, wind speed, and SSHA show a statistically significant, gradual increase. However, Chl-a and NPP show no significant trends over this period. There has also been no trend in the MLD in the Gulf of Mexico interior. The positive long-term trend in wind speed and SST anomalies is consistent with the warming phase of the Atlantic Multidecadal Oscillation (AMO) that started in the mid-90s. This also coincides with a negative trend in the El Niño/Southern Oscillation Multivariate ENSO Index (MEI) related to an increase in the frequency of cooler ENSO events since 1999–2000. The results suggest that over decadal scales, increasing temperature, wind speed, and mesoscale ocean activity have offsetting effects on the MLD. The lack of a trend in MLD anomalies over the past 20years explains the lack of long-term changes in chlorophyll concentration and productivity over this period in the Gulf. Understanding the background of seasonal and long-term variability in these ocean characteristics is important to interpret changes in ocean health due to episodic natural and anthropogenic events and long term climate changes or development activities. With this analysis we provide a baseline against which such changes can be measured.

Open Access
Relevant