Sort by
Investigating the Impact of First-Line Anti-Tuberculosis Drugs Encapsulated in a Eugenol-Based Nanoemulsion on Human Serum Albumin.

Eugenol exhibits broad-spectrum antibacterial and anti-inflammatory properties. However, cytotoxicity at high concentrations limits the full utilization of eugenol-based drug complexes. Formulations of multidrug-loaded eugenol-based nanoemulsions have reduced cytotoxicity; however, it remains crucial to understand how these eugenol complexes interact with primary human carrier proteins to design and develop therapeutic alternatives. Consequently, this study primarily aims to investigate the impact on Human Serum Albumin (HSA) when it interacts with eugenol-based complexes loaded with first-line anti-tuberculosis drugs. This study used various spectroscopic such as UV-visible spectroscopy, Fluorescence spectroscopy, Fourier-transform infrared spectroscopy and computational methods such as molecular docking and 100 ns molecular simulation to understand the impact of eugenol-based first-line anti-tuberculosis drug-loaded nanoemulsions on HSA structure. The binding of the HSA protein and eugenol-based complexes was studied using UV-visible spectroscopic analysis. Minor changes in the fluorophores of the protein further confirmed binding upon interaction with the complexes. The Fourier-transform infrared spectra showed no significant changes in protein structure upon interaction with eugenol-based multidrug-loaded nanoemulsions, suggesting that this complex is safe for internal administration. Unlike eugenol or first-line anti-tuberculosis alone, molecular docking revealed the strength of the binding interactions between the complexes and the protein through hydrogen bonds. The docked complexes were subjected to a 100 ns molecular dynamics simulation, which strongly supported the conclusion that the structure and stability of the protein were not compromised by the interaction. From the results we could comprehend that the eugenol (EUG)-drug complex showed greater stability in HSA protein structure when compared to HSA interacting with isoniazid (INH), rifampicin (RIF), pyrazinamide (PYR), or ethambutol (ETH) alone or with EUG alone. Thus, inferring the potential of EUG-based drug-loaded formulations for a safer and efficient therapeutic use.

Open Access
Relevant
Herbo-Mineral Medicine, Lithom Exhibits Anti-Nephrolithiasis Activity in Rat Model of Hyperoxaluria by Attenuating Calcium Oxalate Crystal Formation and Oxidative Stress.

Calcium oxalate monohydrate (COM) forms the most common type of kidney stones observed in clinics, elevated levels of urinary oxalate being the principal risk factor for such an etiology. The objective of the present study was to evaluate the anti-nephrolithiatic effect of herbo-mineral formulation, Lithom. The in vitro biochemical synthesis of COM crystals in the presence of Lithom was performed and observations were made by microscopy and Scanning Electron Microscope (SEM) based analysis for the detection of crystal size and morphology. The phytochemical composition of Lithom was evaluated by Ultra-High-Performance Liquid Chromatography (UHPLC). The in vivo model of Ethylene glycol-induced hyperoxaluria in Sprague-Dawley rats was used for the evaluation of Lithom. The animals were randomly allocated to 5 different groups namely Normal control, Disease control (ethylene glycol (EG), 0.75%, 28 days), Allopurinol (50 mg/kg, q.d.), Lithom (43 mg/kg, b.i.d.), and Lithom (129 mg/kg, b.i.d.). Analysis of crystalluria, oxalate, and citrate levels, oxidative stress parameters (malondialdehyde (MDA), catalase, myeloperoxidase (MPO)), and histopathology by hematoxylin and eosin (H&E) and Von Kossa staining was performed for evaluation of Lithom. The presence of Lithom during COM crystals synthesis significantly reduced the average crystal area, feret's diameter, and area-perimeter ratio, in a dose-dependent manner. SEM analysis revealed that COM crystals synthesized in the presence of 100 and 300 μg/mL of Lithom exhibited a veritable morphological transition from irregular polygons with sharp edges to smoothened smaller cuboid polygons. UHPLC analysis of Lithom revealed the presence of Trigonelline, Bergenin, Xanthosine, Adenosine, Bohoervinone B, Vanillic acid, and Ellagic acid as key phytoconstituents. In EG-induced SD rats, the Lithom-treated group showed a decrease in elevated urinary oxalate levels, oxidative stress, and renal inflammation. Von Kossa staining of kidney tissue also exhibited a marked reduction in crystal depositions in Lithom-treated groups. Taken together, Lithom could be a potential clinical-therapeutic alternative for management of nephrolithiasis.

Open Access
Relevant
Neurological Deterioration in Wilson's Disease-Types, Etiology, Course, and Management.

Wilson's disease (WD) is an inherited disorder of copper metabolism in which pathological copper accumulation, mainly in the liver and the brain, leads to hepatic and/or neuropsychiatric signs and symptoms. Chelators and zinc salts can successfully induce negative copper balance in many patients; however, neurological deterioration may still be observed. This phenomenon can be divided into: (1) early 'paradoxical' neurological deterioration, which usually develops in the first 6 months of anti-copper treatment and may be commonly related to drug type, or (2) late neurological deterioration, which mostly occurs after 6 months of treatment and is often related either to non-compliance with treatment, overtreatment resulting in copper deficiency, or adverse drug reactions. Another explanation, especially for early neurological deterioration, is natural WD progression, which can be difficult to differentiate from drug-related deterioration, but usually leads to a worse outcome. There is still no consensus on how to define neurological deterioration in WD using scales or biomarkers, how to distinguish it from the natural disease progression, its risk factors, and optimal management. This narrative review, based on the current literature, aims to provide definitions, prevalence, pathological mechanisms and factors related to neurological deterioration, and also proposes schemes for diagnosis and treatment.

Open Access
Relevant
Prevalence and Resistance Patterns of Urinary Tract Infection in Al-Madinah Al-Munawarah, Saudi Arabia: A Retrospective Study.

Urinary tract infections (UTIs) are among the most common infections and can cause numerous complications of the renal system. This study aimed to assess the prevalence of uropathogens and their antibiotic susceptibility patterns in Al-Madinah Al-Munawarah, Saudi Arabia. Data was collected from patients with UTIs presented at King Fahad General Hospital in Al-Madinah Al-Munawarah, Saudi Arabia. In this retrospective cross-sectional study, UTI microbial-causing agents and antimicrobial resistance profiles identified using automated systems, Phoenix and VITEK2, were collected between July 2022 and June 2023. In addition, minimal demographic data, including date of collection and sex and age of patients were collected and analyzed using Chi-square test. The study included 1394 patients positive for UTI, comprising 50.57% males and 49.43% females (chi-square goodness-of-fit, p > 0.999). Microbial identification and antimicrobial susceptibility tests were performed on UTI-positive cultures. Among UTIs, mono-infection, caused by a single pathogen, was the most prevalent, accounting for 88.16% of cases, whereas poly-infection (caused by multiple pathogens) presented at 11.9%. The most prevalent UTIs' pathogens were E. coli (30.59%), followed by Klebsiella pneumoniae (21.40%), Enterococcus faecalis (8.46%), Pseudomonas aeruginosa (7.81%), Streptococcus agalactiae (6.35%), Enterococcus faecium (3.01%), Proteus mirabilis (3.01%), Enterobacter cloacae (2.52%), Candida sp. (2.44%), Acinetobacter calcoaceticus-baumannii (1.95%), Staphylococcus aureus (1.79%), and Enterobacter aerogenes (1.30%). The most dominant pathogens that coexisted with other uropathogens to cause UTIs were K. pneumoniae and P. mirabilis (9.32%, chi-square 5.550, p = 0.018), K. pneumoniae and P. aeruginosa (8.07%, chi-square 6.285, p = 0.012), K. pneumoniae and E. faecalis (7.45%, chi-square 5.785, p = 0.016), Candida sp. and Enterococcus faecium (4.97%, chi-square 9.176, p = 0.002, and Candida sp. and Acinetobacter calcoaceticus-baumannii (3.11%, chi-square 4.312, p=0.038)). Among the uropathogens, gram-negative pathogens showed resistance to most of the tested antimicrobials (ampicillins, cephalosporins, fluoroquinolones, trimethoprim-sulfamethoxazole, aztreonam, and nitrofurantoin). High rates of resistance were identified to cephalosporins, amoxicillin-clavulanic acid, and trimethoprim-sulfamethoxazole. This study reported UT mono-infection and poly-infection in Al-Madinah Al-Munawarah, Saudi Arabia, with a predominant representation from gram-negative bacteria, Enterobacteriaceae. Most of the UT microbial strains showed a highly resistant profile.

Open Access
Relevant
Analgesic Mechanism of Dexmedetomidine and Esketamine in Rats with Spinal Cord Injury.

Spinal cord injury (SCI) is usually caused by external direct or indirect factors, and with a high morbidity and mortality rate. The aim of this study was to observe the effects of Dexmedetomidine (DEX) combined with Esketamine (ESK) on pain behavior and potential analgesic mechanisms in rats with SCI. The goal was to provide a reliable multimodal analgesic medication regimen for SCI. Thirty rats were divided into five groups with six rats in each group: Sham group, SCI group, DEX group, ESK group, and DEX+ESK group. The SCI model in rats was constructed, and the motor function of hind limbs of rats was measured using Basso Beattie Bresnahan (BBB) locomotor rating scale and inclined plate test. The levels of interleukin 18 (IL-18), interleukin 1β (IL-1β), and tumor necrosis factor-α (TNF-α) in the spinal cord were determined by enzyme-linked immunosorbent assay (ELISA). The expressions of substance P (SP), neurokinin-1 receptor (NK-1R), B cell lymphoma-2 (Bcl-2), and Bcl2-associated X protein (Bax) in the rats' spinal cord were measured by Western blot assay. The viability of spinal astrocytes was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. After 7 days, the BBB scores were significantly higher in the DEX, ESK, and DEX+ESK groups compared to the SCI group (p < 0.01). Additionally, the DEX+ESK group had significantly higher scores than both the DEX and ESK groups (p < 0.01). The maximum angle of the DEX (p < 0.05), ESK (p < 0.05), and DEX+ESK groups (p < 0.01) were higher than the SCI group, and the maximum angle of DEX+ESK group was higher than DEX and ESK groups (p < 0.05). The levels of IL-18, IL-1β, and TNF-α in the DEX, ESK, and DEX+ESK groups were lower than the SCI group (p < 0.01), while the DEX+ESK group had significantly lower IL-18, IL-1β, and TNF-α levels than the DEX and ESK groups (p < 0.01). The levels of SP (p < 0.01) and NK-1R (p < 0.05) were lower in the DEX, ESK, and DEX+ESK groups compared to the SCI group, and the levels of SP and NK-1R were lower in the DEX+ESK group compared to the DEX and ESK groups (p < 0.01). The DEX and ESK groups suppressed the activity of spinal astrocytes (p < 0.01), however, the DEX+ESK group had larger effects on spinal astrocytes than the ESK group (p < 0.05). Treatment using DEX combined with ESK improves the motor function, inhibits inflammation and astrocyte activity, and exerts analgesic effects on rats with SCI. These findings can serve as a reference for the selection of multi-modal analgesics.

Open Access
Relevant
Tropomyosin 2 Regulates Tumor Cell Proliferation, Immune Suppression, and Activation of the JNK Signaling Pathway in Colitis-Associated Cancer (CAC).

Tropomyosin 2 (TPM2) has been linked to the advancement of various tumor types, exhibiting distinct impacts on tumor progression. In our investigation, the primary objective was to identify the potential involvement of TPM2 in the development of colitis-associated cancer (CAC) using a mice model. This study used lentiviral vector complex for TPM2 knockdown (sh-TPM2) and the corresponding negative control lentiviral vector complex (sh-NC) for genetic interference in mice. CAC was induced in mice using azoxymethane (AOM) and dextran sulfate sodium salt (DSS). This study included 6 groups of mice models: Control, Control+sh-NC, Control+sh-TPM2, CAC, CAC+sh-NC, and CAC+sh-TPM2. Subsequently, colon tissues were collected and assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for TPM2 mRNA levels and flow cytometry for infiltrating immune cells. Tumor number, size, and weight within colon tissues from CAC mice were measured and recorded. The hematoxylin-eosin staining was used for observing tissue pathology changes. The intestinal epithelial cells (IECs) were isolated and analyzed for cell proliferation. This analysis included examining the levels of 5-bromo-2-deoxyuridine (BrdU) and Ki-67 using immunohistochemistry. Additionally, the mRNA levels of proliferating cell nuclear antigen (PCNA) and Ki-67 were detected by qRT-PCR. This study also investigated the activation of the c-Jun N-terminal kinase (JNK) pathway using western blot analysis. Immunogenicity analyses were conducted using immunohistochemistry for F4/80 and flow cytometry. In 8-week-old mice, AOM injections and three cycles of DSS treatment induced TPM2 upregulation in tumor tissues compared to normal tissues (p < 0.05). Fluorescence-activated cell sorting (FACS)-isolated lamina CAC adenomas revealed macrophages and dendritic cells as primary TPM2 contributors (p < 0.001). Lentiviral TPM2 gene knockdown significantly reduced tumor numbers and sizes in CAC mice (p < 0.01, and p < 0.001), without invasive cancer cells. TPM2 suppression resulted in decreased IEC proliferation (p < 0.001) and reduced PCNA and Ki-67 expression (p < 0.05). Western blot analysis indicated reduced JNK pathway activation in TPM2-knockdown CAC mice (p < 0.05, p < 0.001). TPM2 knockdown decreased tumor-associated macrophage infiltration (p < 0.01) and increased CD3+ and CD8+ T cells (p < 0.01, and p < 0.001), with increased levels of regulator of inflammatory cytokines (CD44+, CD107a+) (p < 0.01, and p < 0.001), decreased levels of PD-1+ and anti-inflammatory factor (IL10+) (p < 0.01, and p < 0.001). Our results demonstrated that TPM2 knockdown suppressed the proliferation of CAC IECs, enhanced immune suppression on CAC IECs, and inhibited the JNK signaling pathway within the framework of CAC. These findings suggest TPM2 can serve as a potential therapeutic target for CAC treatment.

Open Access
Relevant
Sleep Disorders in Patients with Severe COVID-19 Treated in the Intensive Care Unit: A Real-Life Descriptive Study in Vietnam.

Coronavirus disease 2019 (COVID-19) patients with sleep disorders may be at greater risk for respiratory exacerbation or death compared to those without. After being infected with COVID-19, patients have many symptoms related to sleep disorders, especially those with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. This study aimed to evaluate sleep disturbances in patients with severe SARS-CoV-2 infection who were treated in the Intensive Care Unit (ICU). This cross-sectional study used the questionnaire provided by the Vietnam Sleep Disorder Study (ViSDiS) research, elaborated by the Vietnam Society of Sleep Medicine (VSSM). Seventy-seven COVID-19 patients were included. There was a significant difference in sleep status before and after SARS-CoV-2 infection among participants. Up to 83% of them reported experiencing insomnia after illness, 60% reported having frequent nightmares, and more than half of participants reported nocturia (p < 0.0001). More than 81.8% of patients with severe SARS-CoV-2 infection were unsatisfied with their sleep quality during hospitalization After SARS-CoV-2 infection, only 2.6% of participants felt they had good quality sleep (p < 0.0001). The majority of patients suffered from fatigue after SARS-CoV-2 infection, including a lack of energy, feeling heaviness in their limbs, aggravation of pre-existing sleep disorders, idleness, constant fatigue throughout the day, and difficulty concentrating. Sleep problems are highly prevalence among hospitalized patients with severe COVID-19 in the ICU. Healthcare providers should pay attention to sleep problems and their associated symptoms to initiate appropriate treatment to improve severe COVID-19 patients' health status and minimize the risk of death.

Open Access
Relevant
Local Tumor Progression Predictive Model Based on MRI for Colorectal Cancer Liver Metastases after Radiofrequency Ablation.

To investigate the post-radiofrequency ablation (RFA) magnetic resonance imaging (MRI) characteristics in patients with liver metastases from colorectal cancer and to build a predictive model for local tumor progression based on these imaging markers. A cohort of 73 patients with 110 colorectal cancer liver metastases (CRCLM) who underwent RFA and MRI one month post-ablation was included in image signs analysis and predictive model training. Using a newly developed MRI appearance scoring criteria, MR Image Appearance Scoring at One Month after RFA (MRIAS 1MO), the semi-quantitative analysis of MRI findings within the ablation zone were conducted independently by two radiologists. The intraclass correlation coefficient (ICC) was calculated to evaluate measurement reliability. Differences in MRIAS 1MO scores were compared using Mann-Whitney U test, focusing on local tumor response outcomes. Using local tumor progression (LTP) as the primary end point, MRIAS 1MO scores and other lesion morphological and clinical characteristics were included to establish predictive model. Predication accuracy was subsequently evaluated using calibration curve, time-dependent concordance index (C index) curve, and LTP-free survival (LTPFS) curve. Another cohort comprising 60 patients with 76 CRCLMs provided additional MRIAS 1MO scores and clinical data associated with LTP. We evaluated the performance of the established predictive model using calibration curve, time-dependent C index curve, and LTPFS curve. The MRIAS 1MO criteria exhibited strong measurement reliability. The ICC values of T1S (scores from T1WI), T2S (scores form T2WI) and NCES (scores by adding T1S to T2S) MRIS (the overall scores) were 0.825, 0.779, 0.826 and 0.873, respectively. Lesions with LTP showed significantly higher median values for the overall MRIAS 1MO score (MRIS) compared to lesions without LTP (16 vs. 12, p < 0.001). MRIS and lesion diameter were independent prognostic factors of LTP and were included in predictive model (hazard ratio: MRIS over 13.5:4.275, lesion diameter larger than 30 mm: 2.056). The predictive model demonstrated an overall C index of 0.721 and risk stratification using the predictive model resulted in significantly different LPTFS times. In the validation cohort, the C index were 0.825, 0.794 and 0.764 at six, twelve and twenty-four months, respectively. Patients classified as high-risk in the validation cohort had a median LTPFS time of 10.0 months, while the median LTPFS time was not reached in the low-risk group. The semi-quantitative MRIAS 1MO criteria, used for post-RFA MRI appearance analysis, exhibited strong measurement reliability. Prediction models established based on overall MRIAS 1MO score (MRIS) and lesion diameter had good predictive performance for LTP in patients undergoing RFA for CRCLM treatment.

Open Access
Relevant
Epithelial-Mesenchymal Transformation Promotes the Progression of Hepatocellular Carcinoma through NF-κB/MMP9 Axis.

Primary liver cancer (PHC) stands as one of the most prevalent malignant diseases in clinical settings. Studies have indicated that transcatheter arterial chemoembolization (TACE) treatment exhibits superior clinical outcomes, potentially increasing the complete necrosis rate in patients with PHC. A correlation exists between the clinical outcomes of TACE surgery and the process of epithelial-mesenchymal transition (EMT), yet the underlying mechanism remains a mystery. Hence, it is crucial to investigate the impact and mechanism of EMT on hepatocellular carcinoma (HCC). Retrospectively, patients with advanced liver cancer who underwent TACE were selected and categorized into two groups based on the assessment of clinical efficacy: the effective group and the ineffective group. The expression levels of nuclear factor-kappa B (NF-κB), matrix metalloproteinase 9 (MMP9), Ki-67, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), Vimentin, E-cadherin, and N-cadherin in tumor tissues were evaluated using reverse transcription-polymerase chain reaction (RT-PCR). In vitro, Huh7 cells were cultured, and lentivirus infections were utilized to inhibit the overexpression of NF-κB and MMP9. The determination of EMT and cell viability was conducted through Cell Counting Kit-8 (CCK-8) assays, RT-PCR, and Western blot. Sixty patients diagnosed with advanced liver cancer were selected for the study. Based on their clinical outcomes, 30 patients with advanced hepatocellular carcinoma were categorized into the effective group, while the remaining 30 patients were categorized into the ineffective group. The results of the Western blot analysis indicated that, in comparison to the effective group, the expression levels of NF-κB, MMP9, Ki-67, Bcl-2, Vimentin, and N-cadherin were significantly higher in the tumor tissues of the ineffective group. Conversely, the expression of Bax and E-cadherin was notably lower in the effective group. Following the individual knockdown of NF-κB and MMP9, the cell experiments revealed a remarkable decrease in the expression levels of Ki-67, Bcl-2, Vimentin, and N-cadherin, whereas the expression of Bax and E-cadherin showed significant elevation (p < 0.05). Furthermore, there was a significant increase in cell viability and a decrease in cell apoptosis after the knockdown of NF-κB and MMP9. The NF-κB/MMP9 signaling axis serves as a pivotal regulator that fosters proliferation and impedes apoptosis in Huh7 cells by modulating the process of EMT.

Open Access
Relevant
Effect of Calcium Supplementation and TMEM16A Inhibition on Endoplasmic Reticulum Stress Induced by Dental Fluorosis in Mice.

Dental fluorosis is a discoloration of the teeth caused by the excessive consumption of fluoride. It represents a distinct manifestation of chronic fluorosis in dental tissues, exerting adverse effects on the human body, particularly on teeth. The transmembrane protein 16a (TMEM16A) is expressed at the junction of the endoplasmic reticulum and the plasma membrane. Alterations in its channel activity can disrupt endoplasmic reticulum calcium homeostasis and intracellular calcium ion concentration, thereby inducing endoplasmic reticulum stress (ERS). This study aims to investigate the influence of calcium supplements and TMEM16A on ERS in dental fluorosis. C57BL/6 mice exhibiting dental fluorosis were subjected to an eight-week treatment with varying calcium concentrations: low (0.071%), medium (0.79%), and high (6.61%). Various assays, including Hematoxylin and Eosin (HE) staining, immunohistochemistry, real-time fluorescence quantitative polymerase chain reaction (qPCR), and Western blot, were employed to assess the impact of calcium supplements on fluoride content, ameloblast morphology, TMEM16A expression, and endoplasmic reticulum stress-related proteins (calreticulin (CRT), glucose-regulated protein 78 (GRP78), inositol requiring kinase 1α (IRE1α), PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6)) in the incisors of mice affected by dental fluorosis. Furthermore, mice with dental fluorosis were treated with the TMEM16A inhibitor T16Ainh-A01 along with a medium-dose calcium to investigate the influence of TMEM16A on fluoride content, ameloblast morphology, and endoplasmic reticulum stress-related proteins in the context of mouse incisor fluorosis. In comparison to the model mice, the fluoride content in incisors significantly decreased following calcium supplements (p < 0.01). Moreover, the expression of TMEM16A, CRT, GRP78, IRE1α, PERK, and ATF6 were also exhibited a substantial reduction (p < 0.01), with the most pronounced effect observed in the medium-dose calcium group. Additionally, the fluoride content (p < 0.05) and the expression of CRT, GRP78, IRE1α, PERK, and ATF6 (p < 0.01) were further diminished following concurrent treatment with the TMEM16A inhibitor T16Ainh-A01 and a medium dose of calcium. The supplementation of calcium or the inhibition of TMEM16A expression appears to mitigate the detrimental effects of fluorosis by suppressing endoplasmic reticulum stress. These findings hold implications for identifying potential therapeutic targets in addressing dental fluorosis.

Open Access
Relevant