Sort by
Angiogenic factor-driven improvement of refractory thin endometrium with autologous platelet-rich plasma intrauterine infusion in frozen embryo transfer cycles

ObjectiveA beneficial effect on endometrial thickness (EMT) and improvement of pregnancy outcome after intrauterine infusion of platelet-rich plasma (PRP) has been suggested. This study assessed the effect of intrauterine PRP infusion on live birth rate and obstetrical outcomes and analyzed cytokines that can potentially improve pregnancy outcomes through PRP.MethodThis study was a prospective cohort study conducted in a university hospital fertility center. The study included ninety-one patients who had a history of two or more failed in vitro fertilization (IVF) attempts and refractory thin endometrium that remained unresponsive after at least two conventional treatments for thin endometrium. Patients were treated with an intrauterine infusion of autologous PRP between days 7 and 14 of their hormone replacement therapy-frozen embryo transfer (HRT-FET) cycle. PRP was administered at 3-day intervals until their EMT reached 7mm. After a maximum of three PRP administrations, embryo transfer (ET) was performed. The primary outcome was the live birth rate. Secondary outcomes included the implantation rate and increase in EMT compared to the previous cycle. We compared the cytokines related to angiogenesis in a patient’s whole blood (WB) and PRP by utilizing a commercial screening kit.ResultsThe live birth rate in the PRP treatment cycle was 20.9% (19 of 91 patients), significantly superior to the previous cycle without PRP infusion (p < 0.001). The implantation rate was also significantly higher during the PRP treatment cycle (16.4%) compared to the previous cycle (3.1%) (p < 0.001). The mean EMT post-PRP treatment was 6.1 mm, showing a significant increase of 0.8 mm (p < 0.001). Nonetheless, an increase in EMT was also observed in the non-pregnancy group. No adverse effects were reported by patients treated with autologous PRP. Cytokine array analysis confirmed marked increases in well-known pro-angiogenic factors such as Ang-1, EGF, LAP (TGF-b1), MMP-8, PDGF-AA, and PDGF-AB/PDGF-BB.ConclusionIntrauterine PRP infusion offers a safe and effective treatment for patients with refractory thin endometrium and implantation failures. The angiogenic cytokines present in PRP are the primary drivers of this improvement.

Open Access Just Published
Relevant
Role of oxytocin in bone

Oxytocin (OT) is a posterior pituitary hormone that, in addition to its role in regulating childbirth and lactation, also exerts direct regulatory effects on the skeleton through peripheral OT and oxytocin receptor (OTR). Bone marrow mesenchymal stem cells (BMSCs), osteoblasts (OB), osteoclasts (OC), chondrocytes, and adipocytes all express OT and OTR. OT upregulates RUNX2, BMP2, ALP, and OCN, thereby enhancing the activity of BMSCs and promoting their differentiation towards OB rather than adipocytes. OT also directly regulates OPG/RANKL to inhibit adipocyte generation, increase the expression of SOX9 and COMP, and enhance chondrocyte differentiation. OB can secrete OT, exerting influence on the surrounding environment through autocrine and paracrine mechanisms. OT directly increases OC formation through the NκB/MAP kinase signaling pathway, inhibits osteoclast proliferation by triggering cytoplasmic Ca2+ release and nitric oxide synthesis, and has a dual regulatory effect on OCs. Under the stimulation of estrogen, OB synthesizes OT, amplifying the biological effects of estrogen and OT. Mediated by estrogen, the OT/OTR forms a feedforward loop with OB. Apart from estrogen, OT also interacts with arginine vasopressin (AVP), prostaglandins (PGE2), leptin, and adiponectin to regulate bone metabolism. This review summarizes recent research on the regulation of bone metabolism by OT and OTR, aiming to provide insights into their clinical applications and further research.

Open Access Just Published
Relevant
Emerging roles of lipid and metabolic sensing in the neuroendocrine control of body weight and reproduction

The hypothalamus lies at the intersection of brain and hormonal mechanisms governing essential bodily functions, including metabolic/body weight homeostasis and reproduction. While metabolism and fertility are precisely regulated by independent neuroendocrine axes, these are tightly connected, as reflection of the bidirectional interplay between the energy status of the organisms and their capacity to reproduce; a connection with important pathophysiological implications in disorders affecting these two crucial systems. Beyond the well-characterized roles of key hormones (e.g., leptin, insulin, ghrelin) and neuropeptides (e.g., melanocortins, kisspeptins) in the integral control of metabolism and reproduction, mounting evidence has pointed out a relevant function of cell energy sensors and lipid sensing mechanisms in the hypothalamic control of metabolism, with prominent roles also for metabolic sensors, such as mTOR, AMPK and SIRT1, in the nutritional regulation of key aspects of reproduction, such as pubertal maturation. We provide herein a synoptic overview of these novel regulatory pathways, with a particular focus on their putative function in the metabolic control of puberty, and delineate new avenues for further exploration of the intricate mechanisms whereby metabolism and reproduction are tightly connected.

Open Access Just Published
Relevant
Minimizing unnecessary brain magnetic resonance imaging in pediatric endocrinology: a retrospective cohort analysis

BackgroundBrain magnetic resonance imaging (MRI) is mandatory or highly recommended in many pediatric endocrinological conditions to detect causative anatomic anomalies and rule out neoplastic lesions. However, MRI can also show findings associated with the underlying clinical condition, as well as unrelated “incidentalomas”. These latter findings are often abnormalities with a high incidence in the general population for which there is no clear literature regarding their management, especially in pediatric patients. The present study aimed to evaluate the number of unnecessary performed MRIs in pediatric endocrinology.MethodsRetrospective analysis on 584 MRI scans performed in 414 patients (254 growth hormone deficiency, 41 other causes of short stature, 116 central precocious puberty).ResultsThe MRI scans were completely normal in 67% of the individuals, and the prevalence of individuals who underwent more than one MRI was 18%, with no significant differences among the groups. The overall prevalence of incidentalomas was 17%. Among 170 repeated MRI scans, 147 (86%) were not required according to a dedicated protocol. Only five patients (four GHD, one Noonan) correctly repeated the MRI. All the repeated MRI scans did not reveal any progression in the findings. If we include the MRIs performed in cases of OCSS other than Noonan syndrome (n=32) and girls with CPP older than 6 years (n=89), an additional 121 MRIs could have been avoided, leading to a total number of unnecessary MRIs to 268 (46%).ConclusionsOnly a few specific neuroimaging findings in endocrinologic pediatric patients warrant further investigation, while too often repeated imaging is carried out unnecessarily. We advocate the importance of guidelines to reduce costs for both the healthcare system and patients’ families, as well as to alleviate physical and psychological distress for patients and caregivers.

Open Access Just Published
Relevant
Effect of the immune cells and plasma metabolites on rheumatoid arthritis: a mediated mendelian randomization study

BackgroundIncreasing evidence indicates a close relationship between alterations in human immune cells and plasma metabolites with Rheumatoid Arthritis (RA). However, limited studies have left the causal relationships behind these links unclear.MethodsA bidirectional Mendelian Randomization (MR) study was conducted, combined with mediation analysis, using data from genome-wide association study database covering 731 immune cell phenotypes and 1,400 plasma metabolite traits to explore their causal relationships with RA and potential mediating effects. The primary method used for MR analysis was inverse-variance weighted and False Discovery Rate (FDR) correction was applied to verify the robustness of our results.ResultsHLA DR on CD33- HLA DR+ (myeloid cell group) (OR, 1.422; 95% CI, 1.194–1.694; P < 0.001; PFDR = 0.012) increased the risk of developing RA. CD19 on IgD+ CD38- naive (B cell group) (OR, 0.969; 95% CI, 0.954–0.985; P < 0.001; PFDR = 0.021) reduced the risk of developing RA. RA was a risk factor for HLA DR on CD14- CD16+ monocytes (monocyte group) (OR, 1.242; 95% CI, 1.102–1.401; P < 0.001; PFDR = 0.047). RA was a protective factor for memory B cell %lymphocyte (B cell group) (OR, 0.861; 95% CI, 0.795–0.933; P < 0.001; PFDR = 0.050), CD4+ CD8dim T cell %lymphocyte (TBNK group) (OR, 0.802; 95% CI, 0.711–0.904; P < 0.001; PFDR = 0.043), CD4+ CD8dim T cell %leukocyte (TBNK group) (OR, 0.814; 95% CI, 0.726–0.913; P < 0.001; PFDR = 0.046), CD24 on IgD+ CD24+ B cells (B cell group) (OR, 0.857; 95% CI, 0.793–0.927; P < 0.001; PFDR = 0.038), and CD24 on unswitched memory B cells (B cell group) (OR, 0.867; 95% CI, 0.797–0.942; P < 0.001; PFDR = 0.050). Increasing levels of docosatrienoate (22:3n3) (OR, 0.886; 95% CI, 0.838–0.936; P < 0.001; PFDR = 0.023) significantly reduced the risk of developing RA. The mediating effect of plasma metabolites in this context was not established.ConclusionThis study provides genetic evidence for the intricate relationships between immune cells, plasma metabolites, and RA, highlighting the potential mechanisms involved. This will contribute to future directions in precision medicine and research.

Open Access Just Published
Relevant
Exploring molecular mechanisms of exercise on metabolic syndrome: a bibliometric and visualization study using CiteSpace

ObjectiveTo investigate the molecular mechanisms through which exercise influences metabolic syndrome (MS) and identify key research trends and collaborative networks using bibliometric and visualization techniques.MethodsWe conducted a systematic literature search using the Web of Science Core Collection for articles published from 2014 to 2023. Using CiteSpace, we performed a bibliometric analysis of 562 eligible papers, generating visual knowledge maps to identify prevailing patterns, popular subjects, and emerging trends in the literature.ResultsThe study reveals that exercise mitigates MS by reversing high-fat diet-induced abdominal obesity, reducing lipid accumulation and inflammation, enhancing insulin sensitivity, and improving cardiovascular function. Key molecular pathways include PPAR-γ/CPT-1/MCAD signaling, AMPK activation, and nitric oxide production. The USA leads in research output, with significant contributions from American institutions. Collaboration among researchers is limited, highlighting the need for more extensive and high-quality research initiatives.ConclusionsRegular, moderate-to-high-intensity exercise is crucial for managing MS. Exercise activates beneficial molecular pathways, improving metabolic health and cardiovascular function. Future research should focus on expanding collaborations and exploring novel molecular targets to enhance the therapeutic potential of exercise in metabolic syndrome management.

Open Access Just Published
Relevant
Effects of FGF21 overexpression in osteoporosis and bone mineral density: a two-sample, mediating Mendelian analysis

ObjectiveFibroblast growth factor 21 (FGF21) is a secreted protein that regulates body metabolism. In recent years, many observational studies have found that FGF21 is closely related to bone mineral density and osteoporosis, but the causal relationship between them is still unclear. Therefore, this study used two-sample, mediated Mendelian randomization (MR) analysis to explore the causal relationship between FGF21 and osteoporosis and bone mineral density.MethodsWe conducted a two-sample, mediator MR Analysis using genetic data from publicly available genome-wide association studies (GWAS) that included genetic variants in the inflammatory cytokine FGF21, and Total body bone mineral density, Heel bone mineral density, Forearm bone mineral density, Femoral neck bone mineral density, osteoporosis. The main analysis method used was inverse variance weighting (IVW) to investigate the causal relationship between exposure and outcome. In addition, weighted median, simple median method, weighted median method and MR-Egger regression were used to supplement the explanation, and sensitivity analysis was performed to evaluate the reliability of the results.ResultsMR Results showed that FGF21 overexpression reduced bone mineral density: Total body bone mineral density (OR=0.920, 95%CI: 0.876-0.966), P=0.001), Heel bone mineral density (OR=0.971, 95%CI (0.949-0.993); P=0.01), Forearm bone mineral density (OR=0.882, 95%CI(0.799-0.973); P=0.012), Femoral neck bone mineral density (OR=0.952, 95%CI(0.908-0.998), P=0.039); In addition, it also increased the risk of osteoporosis (OR=1.003, 95%CI (1.001-1.005), P=0.004). Sensitivity analysis supported the reliability of these results. The effect of FGF21 overexpression on osteoporosis may be mediated by type 2 diabetes mellitus and basal metabolic rate, with mediating effects of 14.96% and 12.21%, respectively.ConclusionsOur study suggests that the overexpression of FGF21 may lead to a decrease in bone mineral density and increase the risk of osteoporosis, and the effect of FGF21 on osteoporosis may be mediated through type 2 diabetes and basal metabolic rate. This study can provide a reference for analyzing the potential mechanism of osteoporosis and is of great significance for the prevention and treatment of osteoporosis.

Open Access Just Published
Relevant
Paraventricular oxytocin neurons impact energy intake and expenditure: projections to the bed nucleus of the stria terminalis reduce sucrose consumption

BackgroundThe part played by oxytocin and oxytocin neurons in the regulation of food intake is controversial. There is much pharmacological data to support a role for oxytocin notably in regulating sugar consumption, however, several recent experiments have questioned the importance of oxytocin neurons themselves.MethodsHere we use a combination of histological and chemogenetic techniques to investigate the selective activation or inhibition of oxytocin neurons in the hypothalamic paraventricular nucleus (OxtPVH). We then identify a pathway from OxtPVH neurons to the bed nucleus of the stria terminalis using the cell-selective expression of channel rhodopsin.ResultsOxtPVH neurons increase their expression of cFos after both physiological (fast-induced re-feeding or oral lipid) and pharmacological (systemic administration of cholecystokinin or lithium chloride) anorectic signals. Chemogenetic activation of OxtPVH neurons is sufficient to decrease free-feeding in OxtCre:hM3Dq mice, while inhibition in OxtCre:hM4Di mice attenuates the response to administration of cholecystokinin. Activation of OxtPVH neurons also increases energy expenditure and core-body temperature, without a significant effect on locomotor activity. Finally, the selective, optogenetic stimulation of a pathway from OxtPVH neurons to the bed nucleus of the stria terminalis reduces the consumption of sucrose.ConclusionOur results support a role for oxytocin neurons in the regulation of whole-body metabolism, including a modulatory action on food intake and energy expenditure. Furthermore, we demonstrate that the pathway from OxtPVH neurons to the bed nucleus of the stria terminalis can regulate sugar consumption.

Open Access Just Published
Relevant