Sort by
Control of Cracking in Bridge Decks: Observations from the Field

Abstract Crack surveys of bridge decks, performed over a 10-year period in northeast Kansas as part of three studies, provide strong guidance in identifying the parameters that control cracking in these structures. The surveys involve steel girder bridges—bridges that are generally agreed to exhibit the greatest amount of cracking in the concrete decks. The surveys include monolithic decks and decks with silica fume and conventional concrete overlays. The study demonstrates that crack density increases as a function of cement and water content, and concrete strength. In addition, crack density is higher in the end spans of decks that are integral with the abutments than decks with pin-ended supports. Most cracking occurs early in the life of a bridge deck, but continues to increase over time. This is true for bridges cast in both the 1980s and the 1990s. A key observation, however, is that bridge decks cast in the 1980s exhibit less cracking than those in the 1990s, even with the increase in crack density over time. Changes in materials, primarily cement fineness, and construction procedures over the past 20 years, are discussed in light of these observations. A major bright spot has been the positive effect of efforts to limit early evaporation, suggesting that the early initiation of curing procedures will help reduce cracking in bridge decks.

Open Access
Relevant
Pre-Soaked Lightweight Aggregates as Additives for Internal Curing of High-Strength Concretes

Abstract Self-desiccation and autogenous shrinkage of high-strength concretes is one of their drawbacks which cannot be readily accommodated by conventional curing. The concept of internal curing using lightweight soaked aggregates, to provide internal reservoirs of water which enable uniform curing of the whole cross-section, has been advanced by several groups. The present study is intended to develop this approach further, by optimizing the porosity and size of the aggregates to enable successful internal curing with only a small amount of aggregates, which could be viewed as additives rather than bulk replacement of conventional aggregates. The approach taken was to increase the porosity of the aggregates and reduce their size, to obtain a system with numerous internal reservoirs of sufficiently small spacing to allow water to be readily discharged from the aggregate and transported over the whole range of the matrix. It was shown that aggregates with porosities of about 50% by volume, a size of a few millimeters, and contents of less than 50 kg/m3 could provide full elimination of autogenous shrinkage in concretes having w/cm as low as 0.25, with only a small affect on strength. The parameters controlling the efficiency of the aggregates were assessed, indicating that their pore structure is the most important one, and that water from within the aggregates can be readily transported into the matrix to a distance of few millimeters.

Relevant
Influence of Specimen Geometry, Orientation of Casting Plane, and Mode of Concrete Consolidation on Expansion Due to ASR

Abstract Concrete specimens of different sizes and shapes were made with various reactive aggregates and stored under conditions favorable to the development of alkali-silica reactivity (ASR), with their expansion measured with time along the three directions. They have been cast vertically (cylinders and prisms) or horizontally (prisms and larger blocks), using a vibrating table, a vibrating needle, or rodding. The expansion due to ASR was always greater in the direction perpendicular to the casting plane. The higher the number of flat and elongated particles in the reactive aggregate, the higher the coefficient of anisotropy, defined as the ratio between the expansions perpendicular and parallel to the casting plane. This coefficient was constant through the course of the expansion. It was generally higher for the cylinders than for the prisms, and still less for larger blocks. Consolidation by rodding induced anisotropy coefficients distinctly smaller than consolidation using a vibrating table, while a vibrating needle induced intermediate values; however, all methods gave constant volumetric expansion at least up to an important expansion level. For prisms cast horizontally and measured axially in accordance with the concrete test CSA A23.2-14A or ASTM C 1293, consolidation using rodding induced long-term (axial) expansions greater by 71% compared with consolidation using a vibrating table. In order to reduce the experimental variability of the test, only one method of consolidation should be allowed. When evaluating field concrete affected by ASR, it appears important to consider the orientation with respect to the casting plane of the core samples subjected to mechanical or residual expansion tests.

Relevant
Cement and Superplasticizer Combinations: Compatibility and Robustness

Abstract This study highlights the notion of robustness of combinations of cements and superplasticizers. Tests done with various cements and different families of superplasticizers showed that although a combination of a cement and a superplasticizer could be compatible, it is not necessarily robust. Sometimes a little variation in the dosage of the admixture could lead to detrimental side effects, such as segregation, excessive set retardation, or excess air content in the concrete. Results showed that the chemical composition of the cement is critical to ensure good compatibility and adequate robustness of various combinations of cements and superplasticizers. The chemical nature of the superplasticizer also plays a role in the behavior of such combinations. The C3A content, the soluble (alkali) sulphate content, and the fineness of the cement, which influence the adsorption rate of the superplasticizers on the cement particles, are among the key factors that control the compatibility and the robustness of cement-superplasticizer combinations, especially for polysulfonated admixtures. Based on the results of this study, a rough prediction of the compatibility and robustness of cements and superplasticizers could be made by analyzing the chemical composition of the cement and the chemical nature of the superplasticizer.

Relevant