Sort by
The development of extremely large male genitalia under spatial limitation.

Extensive research in evolutionary biology has focused on the exaggeration of sexual traits; however, the developmental basis of exaggerated sexual traits has only been determined in a few cases. The evolution of exaggerated sexual traits may involve the relaxation of constraints or developmental processes mitigating constraints. Ground beetles in the subgenus Ohomopterus (genus Carabus) have species-specific genitalia that show coevolutionary divergence between the sexes. Here, we examined the morphogenesis of the remarkably enlarged male and female genitalia of Carabus uenoi by X-ray microcomputed tomography. The morphogenetic processes generating the male and female genitalia at the pupal stage were qualitatively similar to those in closely related species with standard genital sizes. Higher growth rates contributed to the exaggeration of both the male and female genital parts of C. uenoi, possibly related to a gene network commonly upregulated in both sexes. Additionally, the length of the copulatory piece (CP), the enlarged male genital part stored in the aedeagus (AD), reached close to that of the AD at the later developmental stages and thereafter decelerated to grow in parallel with the AD, suggesting a structural constraint on the CP by the outer AD. Then, unlike related species, the lengths of the CP and AD increased at eclosion, suggesting a mechanism leading to further elongation of the male genitalia. These observations suggest that a developmental process allows continuous growth of the male genitalia even under the spatial limitation. These results revealed the spatio-temporal dynamics of the development of exaggerated genital structures under structural constraints.

Relevant
The genetic determination of alternate stages in polyphenic insects.

Molt-based transitions in form are a central feature of insect life that have enabled adaptation to diverse and changing environments. The endocrine regulation of these transitions is well established, but an understanding of their genetic regulation has only recently emerged from insect models. The pupal and adult stages of metamorphosing insects are determined by the stage specifying transcription factors broad-complex (br) and Ecdysone inducible protein 93 (E93), respectively. A probable larval determinant, chronologically inappropriate metamorphosis (chinmo), has just recently been characterized. Expression of these three transcription factors in the metamorphosing insects is regulated by juvenile hormone with ecdysteroid hormones, and by mutual repression between the stage-specific transcription factors. This review explores the hypothesis that variations in the onset, duration, and tissue-specific expression of chinmo, br, and E93 underlie other polyphenisms that have arisen throughout insects, including the castes of social insects, aquatic stages of mayflies, and the neoteny of endoparasites. The mechanisms that constrain how chinmo, br, and E93 expression may vary will also constrain the ways that insect life history may evolve. I find that four types of expression changes are associated with novel insect forms: (1) heterochronic shift in the turnover of expression, (2) expansion or contraction of expression, (3) tissue-specific expression, and (4) redeployment of stage-specific expression. While there is more to be learned about chinmo, br, and E93 function in diverse insect taxa, the studies outlined here show that insect stages are modular units in developmental time and a substrate for evolutionary forces to act upon.

Open Access
Relevant
DNA methylation reprogramming in teleosts.

Early embryonic development is crucially important but also remarkably diverse among animal taxa. Axis formation and cell lineage specification occur due to both spatial and temporal control of gene expression. This complex system involves various signaling pathways and developmental genes such as transcription factors as well as other molecular interactants that maintain cellular states, including several types of epigenetic marks. 5mC DNA methylation, the chemical modification of cytosines in eukaryotes, represents one such mark. By influencing the compaction of chromatin (a high-order DNA structure), DNA methylation can either repress or induce transcriptional activity. Mammals exhibit a reprogramming of DNA methylation from the parental genomes in the zygote following fertilization, and later in primordial germ cells (PGCs). Whether these periods of methylation reprogramming are evolutionarily conserved, or an innovation in mammals, is an emerging question. Looking into these processes in other vertebrate lineages is thus important, and teleost fish, with their extensive species richness, phenotypic diversity, and multiple rounds of whole genome duplication, provide the perfect research playground for answering such a question. This review aims to present a concise state of the art of DNA methylation reprogramming in early development in fish by summarizing findings from different research groups investigating methylation reprogramming patterns in teleosts, while keeping in mind the ramifications of the methodology used, then comparing those patterns to reprogramming patterns in mammals.

Relevant
Conserved and specific gene expression patterns in the embryonic development of tardigrades.

Tardigrades, commonly known as water bears, are enigmatic organisms characterized by their remarkable resilience to extreme environments despite their simple and compact body structure. To date, there is still much to understand about their evolutionary and developmental features contributing to their special body plan and abilities. This research provides preliminary insights on the conserved and specific gene expression patterns during embryonic development of water bears, focusing on the species Hypsibius exemplaris. The developmental dynamic expression analysis of the genes with various evolutionary age grades indicated that the mid-conserved stage of H. exemplaris corresponds to the period of ganglia and midgut development, with the late embryonic stage showing a transition from non-conserved to conserved state. Additionally, a comparison with Drosophila melanogaster highlighted the absence of certain pathway nodes in development-related pathways, such as Maml and Hairless, which are respectively the transcriptional co-activator and co-repressor of NOTCH regulated genes. We also employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the expression patterns of tardigrade-specific genes during embryo development. Our findings indicated that the module containing the highest proportion of tardigrade-specific genes (TSGs) exhibits high expression levels before the mid-conserved stage, potentially playing a role in glutathione and lipid metabolism. These functions may be associated to the ecdysone synthesis and storage cell formation, which is unique to tardigrades.

Open Access
Relevant
Secondary-tail formation during stolonization in the Japanese green syllid, Megasyllis nipponica.

Benthic annelids belonging to the family Syllidae show a distinctive sexual reproduction mode called "stolonization," in which posterior segments are transformed into a reproductive individual-like unit called a "stolon." Megasyllis nipponica forms a stolon head and a secondary tail in the middle of the trunk before a stolon detaches, while, in the case of posterior amputation, posterior regeneration initiates at the wound after amputation. To understand the difference between posterior regeneration and secondary-tail formation during stolonization, detailed comparisons between the developmental processes of these two tail-formation types were performed in this study. Morphological and inner structural observations (i.e., cell proliferation and muscular/nervous development) showed that some processes of posterior regeneration, such as blastema formation and muscular/nervous regeneration at the amputation site, are missing during secondary-tail formation. In contrast, the secondary tail showed some unique features, such as the formation of ventrolateral half-tail buds that later fused in the middle and muscle/nerve branches formed before the detachment of the stolon. These novel features in the process of stolonization are suggested to be adaptive since the animals need to recover a posterior end quickly to stolonize again.

Open Access
Relevant
Deciphering the origin of developmental stability: The role of intracellular expression variability in evolutionary conservation.

Progress in evolutionary developmental biology (evo-devo) has deepened our understanding of how intrinsic properties of embryogenesis, along with natural selection and population genetics, shape phenotypic diversity. A focal point of recent empirical and theoretical research is the idea that highly developmentally stable phenotypes are more conserved in evolution. Previously, we demonstrated that in Japanese medaka (Oryzias latipes), embryonic stages and genes with high stability, estimated through whole-embryo RNA-seq, are highly conserved in subsequent generations. However, the precise origin of the stability of gene expression levels evaluated at the whole-embryo level remained unclear. Such stability could be attributed to two distinct sources: stable intracellular expression levels or spatially stable expression patterns. Here we demonstrate that stability observed in whole-embryo RNA-seq can be attributed to stability at the cellular level (low variability in gene expression at the cellular levels). We quantified the intercellular variations in expression levels and spatial gene expression patterns for seven key genes involved in patterning dorsoventral and rostrocaudal regions during early development in medaka. We evaluated intracellular variability by counting transcripts and found its significant correlation with variation observed in whole-embryo RNA-seq data. Conversely, variation in spatial gene expression patterns, assessed through intraindividual left-right asymmetry, showed no correlation. Given the previously reported correlation between stability and conservation of expression levels throughout embryogenesis, our findings suggest a potential general trend: the stability or instability of developmental systems-and the consequent evolutionary diversity-may be primarily anchored in intrinsic fundamental elements such as the variability of intracellular states.

Relevant