Sort by
High-resolution mantle flow models reveal importance of plate boundary geometry and slab pull forces on generating tectonic plate motions

Mantle convection models based on geophysical constraints have provided us with a basic understanding of the forces driving and resisting plate motions on Earth. However, existing studies computing the balance of underlying forces are contradicting, and the impact of plate boundary geometry on surface deformation remains unknown. We address these issues by developing global instantaneous 3-D mantle convection models with a heterogeneous density and viscosity distribution and weak plate boundaries prescribed using different geometries. We find that the plate boundary geometry of the Global Earthquake Model (GEM, Pagani et al., 2018), featuring open plate boundaries with discrete lithospheric-depth weak zones in the oceans and distributed crustal faults within continents, achieves the best fit to the observed GPS data with a directional correlation of 95.1% and a global point-wise velocity residual of 1.87 cm/year. A good fit also requires plate boundaries being 3 to 4 orders of magnitude weaker than the surrounding lithosphere and low asthenospheric viscosities between 5e17 and 5e18 Pa s. Models without asthenospheric and lower mantle heterogeneities retain on average 30% and 70% of the plate speeds, respectively. Our results show that Earth’s plate boundaries are not uniform and better described by more discrete plate boundaries within the oceans and distributed faults within continents. Furthermore, they emphasize the impact of plate boundary geometry on the direction and speed of plate motions and reaffirm the importance of slab pull in the uppermost mantle as a major plate driving force.

Open Access
Relevant
TOI-270 as a unique testbed for exoplanet formation & evolution

<p>The nearby TOI-270 system provides an unparalleled opportunity to observationally probe hypotheses for exoplanet formation and evolution. The system hosts one super-Earth and two sub-Neptunes near mean-motion resonances and transiting a bright (K-mag 8.25) M3V dwarf. Strangely, M-dwarf systems harbouring only super-Earths or only sub-Neptunes are ubiquitous. However, for still unknown reasons, systems with multiple planets spanning the radius valley are rare - and we know merely a handful of systems bright enough for precise mass measurements and atmospheric studies. To this end, TOI-270's planets are exceptionally favourable for detailed transit timing variation (TTV) and transmission spectroscopy observations. First, with the planets orbiting near low-order resonances (5:3 and 2:1), our extensive observing campaign with eight different observatories since 2018 yields clear TTV signals for planets c and d, with amplitudes of around 10 min and a super-period of circa 3 yr. Using dynamical models, we can thus significantly constrain their radii, mass ratios, and eccentricities. This adds to complementary radial velocity (RV) mass measurements from HARPS and ESPRESSO. Second, via HST and JWST transmission spectroscopy we can characterise and compare the atmospheres of two sub-Neptunes formed from the same protoplanetary nebula and test hypotheses like photoevaporation, core-powered mass-loss, and gas-poor formation. As one of the best-constrained small planet systems, TOI-270 can thus serve as a unique observational testbed for formation and evolution theories. </p>

Relevant