Sort by
Optimized Workflow for Whole Genome and Transcriptome Next‐Generation Sequencing of Single Cells or Limited Nucleic Acid Samples

Whole genome and whole transcriptome sequencing require orders of magnitude more of starting nucleic acid than what is found in single cells or other extremely limited samples. High fidelity amplification of this minute amount of nucleic acids is essential to overcome the limitations caused by the low input, degradation and contamination, and to ensure a sufficient amount of DNA for preparation of high complex and high quality next-generation sequencing (NGS) libraries. Recent technical advances in multiple displacement amplification (MDA) enable studies of rare cell types, heterogeneity of body fluids, tissues, environmental samples, and organisms that cannot be cultured. Several strategies for amplification of limiting amounts of nucleic acid have been described, with PCR being popular. However, PCR-based methods result in high error rates, lower library complexity, and lower coverage uniformity. In this article, a HiFi MDA is used to accurately amplify the limited material and to allow library preparation starting from high input, while reducing PCR cycling to achieve sufficient library yields. This article describes a complete workflow from cells and small quantities of DNA or RNA to NGS libraries for Illumina sequencing instruments. © 2023 QIAGEN GmbH. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Whole genome amplification from single cells Support Protocol 1: PicoGreen™ quantification of MDA amplified DNA Support Protocol 2: Purification of amplified DNA after MDA Basic Protocol 2: Whole transcriptome amplification from single cells Alternate Protocol: Whole transcriptome amplification from purified RNA Basic Protocol 3: Enrichment of complete small genomes using target-specific primers in MDA Basic Protocol 4: Complete viral RNA amplification using target-specific primers in MDA Basic Protocol 5: Enzymatic fragmentation and adapter ligation of MDA amplified material Basic Protocol 6: Normalization of library concentration using magnetic beads.

Open Access
Relevant
Systematic Review on the Correlation Between SARS-CoV-2 Real-Time PCR Cycle Threshold Values and Epidemiological Trends.

The ability to proactively predict the epidemiological dynamics of infectious diseases such as coronavirus disease 2019 (COVID-19) would facilitate efficient public health responses and may help guide patient management. Viral loads of infected people correlate with infectiousness and, therefore, could be used to predict future case rates. In this systematic review, we determine whether there is a correlation between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) real-time reverse-transcription polymerase chain reaction (RT-PCR) cycle threshold (Ct) values (a proxy for viral load) and epidemiological trends in patients diagnosed with COVID-19, and whether Ct values are predictive of future cases. A PubMed search was conducted on August 22 2022, based on a search strategy of studies reporting correlations between SARS-CoV-2 Ct values and epidemiological trends. Data from 16 studies were relevant for inclusion. RT-PCR Ct values were measured from national (n = 3), local (n = 7), single-unit (n = 5), or closed single-unit (n = 1) samples. All studies retrospectively examined the correlation between Ct values and epidemiological trends, and seven evaluated their prediction model prospectively. Five studies used the temporal reproduction number (Rt) as the measure of the population/epidemic growth rate. Eight studies reported a prediction time in the negative cross-correlation between Ct values and new daily cases, with seven reporting a prediction time of ~1-3weeks, and one reporting 33days. Ct values are negatively correlated with epidemiological trends and may be useful in predicting subsequent peaks in variant waves of COVID-19 and other circulating pathogens.

Open Access
Relevant
Detecting zoonotic Influenza A using QIAstat-Dx Respiratory SARS-CoV-2 panel for pandemic preparedness

Recent reports from the World Health Organization regarding Influenza A cases of zoonotic origin in humans (H1v and H9N2) and publications describing emergence swine Influenza A cases in humans together with “G4” Eurasian avian-like H1N1 Influenza A virus have drawn global attention to Influenza A pandemic threat. Additionally, the current COVID-19 epidemic has stressed the importance of surveillance and preparedness to prevent potential outbreaks. One feature of the QIAstat-Dx Respiratory SARS-CoV-2 panel is the double target approach for Influenza A detection of seasonal strains affecting humans using a generic Influenza A assay plus the three specific human subtype assays. This work explores the potential use of this double target approach in the QIAstat-Dx Respiratory SARS-Co-V-2 Panel as a tool to detect zoonotic Influenza A strains. A set of recently recorded H9 and H1 spillover strains and the G4 EA Influenza A strains as example of recent zoonotic Flu A strains were subjected to detection prediction with QIAstat-Dx Respiratory SARS-CoV-2 Panel using commercial synthetic dsDNA sequences. In addition, a large set of available commercial human and non-human influenza A strains were also tested using QIAstat-Dx Respiratory SARS-CoV-2 Panel for a better understanding of detection and discrimination of Influenza A strains. Results show that QIAstat-Dx Respiratory SARS-CoV-2 Panel generic Influenza A assay detects all the recently recorded H9, H5 and H1 zoonotic spillover strains and all the G4 EA Influenza A strains. Additionally, these strains yielded negative results for the three-human seasonal IAV (H1, H3 and H1N1 pandemic) assays. Additional non-human strains corroborated those results of Flu A detection with no subtype discrimination, whereas human Influenza strains were positively discriminated. These results indicate that QIAstat-Dx Respiratory SARS-CoV-2 Panel could be a useful tool to diagnose zoonotic Influenza A strains and differentiate them from the seasonal strains commonly affecting humans.

Open Access
Relevant
Differential interferon-α subtype induced immune signatures are associated with suppression of SARS-CoV-2 infection

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection invitro and in SARS-CoV-2-infected mice invivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.

Open Access
Relevant
Evaluation of a lateral-flow nanoparticle fluorescence assay for TB infection diagnosis.

SUMMARYBACKGROUND:Programmatic management of TB infection is a critical component of the WHO End TB Strategy. Interferon-gamma release assays (IGRAs) overcome some limitations of the tuberculin skin test, but implementation of IGRA testing in low-resource settings is challenging.METHODS:In this feasibility study, we evaluated performance of a novel digital lateral-flow assay, the QIAreach® QuantiFERON® TB (QIAreach-QFT) test, against the QuantiFERON®-TB Gold Plus (QFT-Plus) assay. A population with a mix of risk factors for TB infection (111 donors) were sampled over multiple days. A total of 207 individual blood samples were tested according to the manufacturer’s instructions.RESULTS:The overall percentage agreement was 95.6% (two-sided 95% CI 91.8–98), with a positive percentage agreement (i.e., sensitivity) of 100% (95% CI 94.7–100) and a negative percentage agreement (i.e., specificity) of 95.6% (95% CI 90.6–98.4). All QFT-Plus positive specimens with TB1-Nil and TB2-Nil values less than 1 IU/ml tested positive on QIAreach-QFT.CONCLUSIONS:QIAreach QFT is a deployable, accurate testing solution for decentralised testing. It has the potential to overcome key hurdles for TB infection screening in high-burden settings thus helping to achieve the WHO End TB programme goals.

Open Access
Relevant
Transient knockdown of Anopheles stephensi LRIM1 using RNAi increases Plasmodium falciparum sporozoite salivary gland infections

BackgroundPlasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development.MethodsExpression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression.ResultsLRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold.ConclusionsPlasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria’s PfSPZ products.

Open Access
Relevant
Differential interferon-α subtype immune signatures suppress SARS-CoV-2 infection

SummaryType I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies and have been successfully employed for the treatment of viral diseases. Humans express twelve IFN-alpha (α) subtypes, which activate downstream signalling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in type I IFN immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19, therefore, early administration of type I IFNs may be protective against life-threatening disease. Here we comprehensively analysed the antiviral activity of all IFNα subtypes against SARS-CoV-2 to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate and low antiviral IFNs. In particular IFNα5 showed superior antiviral activity against SARS-CoV-2 infection. Dose-dependency studies further displayed additive effects upon co-administered with the broad antiviral drug remdesivir in cell culture. Transcriptomics of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in type I IFN signalling pathways, negative regulation of viral processes and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multi-modular definition of antiviral host responses mediated by defined type I IFNs. This knowledge shall support the development of novel therapeutic approaches against SARS-CoV-2.

Open Access
Relevant
PD-1 and TIGIT coexpression identifies a circulating CD8 T cell subset predictive of response to anti-PD-1 therapy

BackgroundClinical benefit from programmed cell death 1 receptor (PD-1) inhibitors relies on reinvigoration of endogenous antitumor immunity. Nonetheless, robust immunological markers, based on circulating immune cell subsets associated with therapeutic efficacy are yet to be validated.MethodsWe isolated peripheral blood mononuclear cell from three independent cohorts of melanoma and Merkel cell carcinoma patients treated with PD-1 inhibitor, at baseline and longitudinally after therapy. Using multiparameter flow cytometry and cell sorting, we isolated four subsets of CD8+ T cells, based on PD-1 and TIGIT expression profiles. We performed phenotypic characterization, T cell receptor sequencing, targeted transcriptomic analysis and antitumor reactivity assays to thoroughly characterize each of these subsets.ResultsWe documented that the frequency of circulating PD-1+TIGIT+ (DPOS) CD8+ T-cells after 1 month of anti-PD-1 therapy was associated with clinical response and overall survival. This DPOS T-cell population was enriched in highly activated T-cells, tumor-specific and emerging T-cell clonotypes and T lymphocytes overexpressing CXCR5, a key marker of the CD8 cytotoxic follicular T cell population. Additionally, transcriptomic profiling defined a specific gene signature for this population as well as the overexpression of specific pathways associated with the therapeutic response.ConclusionsOur results provide a convincing rationale for monitoring this PD-1+TIGIT+ circulating population as an early cellular-based marker of therapeutic response to anti-PD-1 therapy.

Open Access
Relevant