Sort by
CANCER PREDICTION IN INFLAMMATORY BOWEL DISEASE PATIENTS BY USING MACHINE LEARNING ALGORITHMS

Colon cancer is one of the most common spread cancers in the world, which leads to total death of 10%. Prediction of onset of cancer, and the cause of its development in these patients can be of an enormous help and relief to those affected, as they can get back their “normal” life. Data mining and machine learning are important intelligent tools for classification, prediction and hidden relation extraction between patient information. We collected data from Shahid Faghihi Hospital in Shiraz. Features collected are as follows: Gender, age, duration of cancer before surgery, number of times the patients used bathroom, taking anti-inflammatory drug prednisolone, duration of drug use and dosage, kind of surgery and number of times consulted and retreatment of surgery, incontinence, etc. After pre-processing and data cleaning stages, effective features were extracted, and also occurrence of cancer predicts by using different classification algorithms. Then association rule mining algorithms like Apriori were used for obtaining any internal hidden relation between entries. Approaching them with different algorithms and assessing them with support vector machine was with highest prediction accuracy (84%). Due to unbalanced dataset, we chose cost sensitive support vector machine. In another aspect, after applying Apriori algorithm, the conditions of non-inflammation were extracted based on dataset features. Some significant outcomes are in what follows. If surgery treatment or diagnosed was less than 5 years, the possibility of developing colon cancer is lower. Also, as the duration of disease increases, the possibility of reoperation increases, as confirmed by the interiors. Since this issue with these features was raised for the first time in this paper at the suggestion of internists, early detection of cancer and also the extraction of effective laws can be of help to the medical community. In future, to get higher accuracy, the improvement of the dataset in terms of number of samples and colonoscopy image features is considered.

Relevant
Studying the Inhibitory Effects of Some Chalcone Derivatives on <i>Streptococcus mutans</i> Sortase A to Prevent Dental Caries: An In Silico Approach

Background: Streptococcus mutans is one of the most important microorganisms in tooth decay. Sortase A (SrtA) of S. mutans is responsible for the attachment of bacteria to the host cell and biofilm formation. Therefore, it seems necessary to investigate the inhibitors of this enzyme to prevent dental caries. Chalcones are always of interest in the medical community due to their wide range of biological activities. Many studies have reported that chalcone can help prevent caries. The present study was conducted to identify potential SrtA inhibitors with the chalcone skeleton. Methods: The chalcone derivatives were obtained from the ZINC15, LEA3D, and PubChem databases, and then the selected compounds were optimized by HyperChem software. The affinity of these compounds to SrtA and total binding free energy (ΔGbind) were estimated by the AutoDock 4.0 program. Finally, drug-likeness screening and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the best ligands were obtained using online servers. Results: Compared to chalcone, four of the studied ligands, including compounds 2, 7, 8, and 9 demonstrated high affinity for binding to S. mutans SrtA, with suitable drug-likeness and ADMET properties. Ligand 9 interacted with the key residues in the active site by the most negative ΔGbind (-4.64 kcal/mol). The best conformation of this ligand had the most overlap with the chalcone. Conclusion: By complementary both in vitro and in vivo studies on the inhibitory effects of compounds 2, 7, 8, and 9, the present study can be useful in controlling tooth decay and dental diseases.

Open Access
Relevant
An evaluation of the risk factors associated with implementing projects of health information technology by fuzzy combined ANP-DEMATEL.

Application of a Clinical Information System (CIS) like Electronic Patient Record (EPR), PACS system and CPOE has turned into one of the most important criteria of priorities of health care systems. The aims of the clinical information system include improving the physicians' efficiency level, integrating the caring process, and expanding the fuzzy quality of the services offered to patients. Achievement of these benefits in reality is not an easy task, and there are lots of plans in this field which are doomed to failure. About 50% of the implementation plans of clinical information systems in health care organizations have failed, and this trend is significantly affecting industrial countries. Proper implementation of hospital information systems lies in identifying and assessing the relationships among the most important risk factors of fuzzy. The present study aimed to provide an applicable model for identifying, ranking and evaluating the risk factors associated with projects of clinical information technology in hospitals of Shiraz University of Medical Sciences. This is an applied study which evaluates the risk factors associated with implementation of clinical information technology projects in hospitals of Shiraz Medical Sciences University. The participants consisted of professionals and senior experts of clinical information technology. Fuzzy logic was used in this study. We also applied ANP-DEMATEL combined model with fuzzy procedure to provide the analytic model of the study. According to the study findings, lack of top-executive supports, and unstable organizational environment were the two most important risk factors, while the main organizational factors and technology were also highly important. In addition, the factors associated with technology had the highest influence on the other studied risk factors. Hospital authorities can benefit from this proposed model to reduce the risk of implementing the projects of clinical information technology and improve the success coefficient of the risk of such projects.

Open Access
Relevant
Optimal Coordination of TCSC and PSS2B Controllers in Electric Power Systems Using MOPSO Multiobjective Algorithm

Oscillations are an intrinsic phenomenon in interconnected power systems, leading to steady-state stability, safety decline, transmission power limitation, and electric power systems’ ineffective exploitation by developing power systems, particularly by connecting these systems to low-load lines. In addition, they affect the economic performance of the systems. In this study, PSS2B power system stabilizers and TCSC compensators are used to improve the stability margin of power systems. In order to coordinate TCSC compensators, the MOPSO multiobjective algorithm with integral of the time-weighted absolute error (ITAE) and figure of demerit (FD) objective functions was used. The MOPSO algorithm optimization results are compared with nondominated sorting genetic algorithm (NSGAII) and multiobjective differential evolution (MODE) algorithms. The optimization results indicated a better performance of the proposed MOPSO algorithm than NSGAII and MODE. The simulations were iterated in two scenarios by creating different loading conditions in generators. The results indicated that the proposed control system, where the coordination between PSS2B power system stabilizers and TCSC compensators using the MOPSO algorithm, is better than power systems in which PSS2B Stabilizers or TCSC compensators are utilized solely. All criteria, e.g., ITAE, FD, maximum deviation range, and the required time for power oscillation damping in hybrid control systems, have been obtained. This means more stability and accurate and proper performance.

Open Access
Relevant
EZH2 deregulates BMP, Hedgehog, and Hippo cell signaling pathways in esophageal squamous cell carcinoma

PurposeCell signaling pathways play central roles in cellular stemness state, and aberrant activation of these cascades is attributed to the severity of esophageal squamous cell carcinoma (ESCC). In this study, we aimed to determine the potential impact of enhancer of zeste homolog 2 (EZH2) gene on different cell signaling pathways including bone morphogenesis protein (BMP), Hedgehog, and Hippo in ESCC, and to illuminate EZH2-mediated gene regulatory networks in this aggressive malignancy. Materials and methodsEZH2 silencing was performed in two ESCC lines, KYSE-30 and YM-1, followed by gene expression analysis of BMP, Hedgehog, and Hippo signaling using RT-qPCR. EZH2 enforced expression was induced in both cell lines and gene expression of the pathways was evaluated in parallel. The contribution of EZH2 in epithelial-mesenchymal transition (EMT) and cell migration were also evaluated. ResultsEZH2 downregulation decreased expression of the vital components of the Hedgehog and Hippo signaling, while EZH2 upregulation significantly increased its levels in both ESCC cell lines. The expression of BMP target genes was either reduced in EZH2-expressing cells or increased in EZH2-silencing cells. Enforced expression of EZH2 stimulated downregulation of epithelial markers and upregulation of mesenchymal markers in KYSE-30 and YM-1 ​cells. Significant downregulation of mesenchymal markers was detected following the silencing of EZH2 in the cells. Knocking down EZH2 decreased migration, while enforced expression of EZH2 increased migration in both ESCC lines. ConclusionsThese results may support the promoting role of EZH2 in ESCC tumorigenesis through the recruitment of important cell signaling pathways.

Relevant