Sort by
Pharmacological modulation of Kv3 voltage-gated potassium channels regulates fear discrimination and expression in a response-dependent manner

Various psychiatric diseases are characterized by aberrant cognition and emotional regulation. This includes inappropriately attributing affective salience to innocuous cues, which can be investigated using translationally relevant preclinical models of fear discrimination. Activity in the underpinning corticolimbic circuitry is governed by parvalbumin-expressing GABAergic interneurons, which also regulate fear discrimination. Kv3 voltage-gated potassium channels are highly expressed in these neurons and are important for controlling their activity, suggesting that pharmacological Kv3 modulation may regulate fear discrimination. We determined the effect of the positive Kv3 modulator AUT00206 given systemically to female rats undergoing limited or extended auditory fear discrimination training, which we have previously shown results in more discrimination or generalization, respectively, based on freezing at retrieval. We also characterized darting and other active fear-related responses. We found that limited training resulted in more discrimination based on freezing, which was unaffected by AUT00206. In contrast, extended training resulted in more generalization based on freezing and the emergence of discrimination based on darting during training and, to a lesser extent, at retrieval. Importantly, AUT00206 given before extended training had dissociable effects on fear discrimination and expression at retrieval depending on the response examined. While AUT00206 mitigated generalization without affecting expression based on freezing, it reduced expression without affecting discrimination based on darting, although darting levels were low overall. These results indicate that pharmacological Kv3 modulation regulates fear discrimination and expression in a response-dependent manner. They also raise the possibility that targeting Kv3 channels may ameliorate perturbed cognition and emotional regulation in psychiatric disease.

Open Access
Relevant
New insights into the molecular basis of allosteric activation of the TMEM16A channel and consequences for the control of vascular tone.

The TMEM16A chloride channel represents a fundamental depolarising mechanism in arterial smooth muscle cells (SMCs) and cerebral contractile pericytes. The channel is a proposed target for diseases of impaired vascular tone including stroke, vascular dementia and hypertension; however, the mechanisms of modulation of the channel by synthetic inhibitors and activators are incompletely understood. Here, we provide a functional characterization of a recently disclosed positive allosteric modulator (PAM) of the TMEM16A channel. In the presence of sub-maximal (300 nM) intracellular free Ca2+ concentration [Ca2+]i, PAM activated the heterologously expressed TMEM16A channels at positive and negative potentials (EC50≈4 nM), while being almost ineffective on the closely related TMEM16B channel. PAM did not activate the TMEM16A currents in either the absence of intracellular Ca2+ or in the presence of saturating [Ca2+]i (12 μM). Mutant TMEM16A channels with the intracellular gate constitutively open were much less sensitive to PAM, suggesting that PAM may act as a modifier of TMEM16A channel gating. Consistent with the effects observed in heterologously expressed TMEM16A channels, PAM activated endogenous TMEM16A currents in isolated rat aortic SMCs, promoted contraction of isolated aortic rings and enhanced capillary (pericyte) constriction evoked by endothelin-1 or oxygen-glucose deprivation (OGD) to stimulate cerebral ischemia. Conversely, inhibiting TMEM16A pharmacologically facilitated arterial and pericyte relaxation, and protected against OGD-mediated pericyte cell death. In summary, this work (i) enhances our understanding of fundamental mechanisms of biophysical modulation of the TMEM16A channel and (ii) supports the view that TMEM16A is a key determinant of SMCs and pericytes tone.

Relevant
The effects of AUT00206, a novel Kv3.1/3.2 potassium channel modulator, on task-based reward system activation: a test of mechanism in schizophrenia

The pathophysiology of schizophrenia involves abnormal reward processing, thought to be due to disrupted striatal and dopaminergic function. Consistent with this hypothesis, functional magnetic resonance imaging (fMRI) studies using the monetary incentive delay (MID) task report hypoactivation in the striatum during reward anticipation in schizophrenia. Dopamine neuron activity is modulated by striatal GABAergic interneurons. GABAergic interneuron firing rates, in turn, are related to conductances in voltage-gated potassium 3.1 (Kv3.1) and 3.2 (Kv3.2) channels, suggesting that targeting Kv3.1/3.2 could augment striatal function during reward processing. Here, we studied the effect of a novel potassium Kv3.1/3.2 channel modulator, AUT00206, on striatal activation in patients with schizophrenia, using the MID task. Each participant completed the MID during fMRI scanning on two occasions: once at baseline, and again following either 4 weeks of AUT00206 or placebo treatment. We found a significant inverse relationship at baseline between symptom severity and reward anticipation-related neural activation in the right associative striatum (r = -0.461, p = 0.035). Following treatment with AUT00206, there was a significant increase in reward anticipation-related activation in the left associative striatum (t(13) = 4.23, peak-level p(FWE) < 0.05)), but no significant effect in the ventral striatum. This provides preliminary evidence that the Kv3.1/3.2 potassium channel modulator, AUT00206, may address reward-related striatal abnormalities in schizophrenia.

Open Access
Relevant
The effect of AUT00206, a Kv3 potassium channel modulator, on dopamine synthesis capacity and the reliability of [18F]-FDOPA imaging in schizophrenia.

Background:Current treatments for schizophrenia act directly on dopamine (DA) receptors but are ineffective for many patients, highlighting the need to develop new treatment approaches. Striatal DA dysfunction, indexed using [18F]-FDOPA imaging, is linked to the pathoetiology of schizophrenia. We evaluated the effect of a novel drug, AUT00206, a Kv3.1/3.2 potassium channel modulator, on dopaminergic function in schizophrenia and its relationship with symptom change. Additionally, we investigated the test–retest reliability of [18F]-FDOPA PET in schizophrenia to determine its potential as a biomarker for drug discovery.Methods:Twenty patients with schizophrenia received symptom measures and [18F]-FDOPA PET scans, before and after being randomised to AUT00206 or placebo groups for up to 28 days treatment.Results:AUT00206 had no significant effect on DA synthesis capacity. However, there was a correlation between reduction in striatal dopamine synthesis capacity (indexed as Kicer) and reduction in symptoms, in the AUT00206 group (r = 0.58, p = 0.03). This was not observed in the placebo group (r = −0.15, p = 0.75), although the placebo group may have been underpowered to detect an effect. The intraclass correlation coefficients of [18F]-FDOPA indices in the placebo group ranged from 0.83 to 0.93 across striatal regions.Conclusions:The relationship between reduction in DA synthesis capacity and improvement in symptoms in the AUT00206 group provides evidence for a pharmacodynamic effect of the Kv3 channel modulator. The lack of a significant overall reduction in DA synthesis capacity in the AUT00206 group could be due to variability and the low number of subjects in this study. These findings support further investigation of Kv3 channel modulators for schizophrenia treatment. [18F]-FDOPA PET imaging showed very good test–retest reliability in patients with schizophrenia.

Open Access
Relevant
Kv3 Channels Contribute to the Excitability of Subpopulations of Spinal Cord Neurons in Lamina VII.

Autonomic parasympathetic preganglionic neurons (PGNs) drive contraction of the bladder during micturition but remain quiescent during bladder filling. This quiescence is postulated to be because of recurrent inhibition of PGN by fast-firing adjoining interneurons. Here, we defined four distinct neuronal types within Lamina VII, where PGN are situated, by combining whole cell patch clamp recordings with k-means clustering of a range of electrophysiological parameters. Additional morphologic analysis separated these neuronal classes into parasympathetic preganglionic populations (PGN) and a fast-firing interneuronal population. Kv3 channels are voltage-gated potassium channels (Kv) that allow fast and precise firing of neurons. We found that blockade of Kv3 channels by tetraethylammonium (TEA) reduced neuronal firing frequency and isolated high-voltage-activated Kv currents in the fast-firing population but had no effect in PGN populations. Furthermore, Kv3 blockade potentiated the local and descending inhibitory inputs to PGN indicating that Kv3-expressing inhibitory neurons are synaptically connected to PGN. Taken together, our data reveal that Kv3 channels are crucial for fast and regulated neuronal output of a defined population that may be involved in intrinsic spinal bladder circuits that underpin recurrent inhibition of PGN.

Open Access
Relevant
Reducing voltage-dependent potassium channel Kv3.4 levels ameliorates synapse loss in a mouse model of Alzheimer's disease.

Synapse loss is associated with cognitive decline in Alzheimer’s disease, and owing to their plastic nature, synapses are an ideal target for therapeutic intervention. Oligomeric amyloid beta around amyloid plaques is known to contribute to synapse loss in mouse models and is associated with synapse loss in human Alzheimer’s disease brain tissue, but the mechanisms leading from Aβ to synapse loss remain unclear. Recent data suggest that the fast-activating and -inactivating voltage-gated potassium channel subtype 3.4 (Kv3.4) may play a role in Aβ-mediated neurotoxicity. Here, we tested whether this channel could also be involved in Aβ synaptotoxicity. Using adeno-associated virus and clustered regularly interspaced short palindromic repeats technology, we reduced Kv3.4 expression in neurons of the somatosensory cortex of APP/PS1 mice. These mice express human familial Alzheimer’s disease-associated mutations in amyloid precursor protein and presenilin-1 and develop amyloid plaques and plaque-associated synapse loss similar to that observed in Alzheimer’s disease brain. We observe that reducing Kv3.4 levels ameliorates dendritic spine loss and changes spine morphology compared to control virus. In support of translational relevance, Kv3.4 protein was observed in human Alzheimer’s disease and control brain and is associated with synapses in human induced pluripotent stem cell–derived cortical neurons. We also noted morphological changes in induced pluripotent stem cell neurones challenged with human Alzheimer’s disease-derived brain homogenate containing Aβ but, in this in vitro model, total mRNA levels of Kv3.4 were found to be reduced, perhaps as an early compensatory mechanism for Aβ-induced damage. Overall, our results suggest that approaches to reduce Kv3.4 expression and/or function in the Alzheimer’s disease brain could be protective against Aβ-induced synaptic alterations.

Open Access
Relevant