Sort by
Deterioration Valuation of Polymer Materials in UV-ozone Generator using Microwave Plasma

Various materials are used to sterilize medical instruments. Rubber and other products deteriorate owing to ozone and UV exposure. Ozone is capable of inactivating bacteria and fungi and is known to be effective in inactivating a wide range of viruses. Silent discharge is the mainstream method of ozone generation. The silent discharge method is also concerned with the generation of nitrogen oxides (NOX) caused by nitrogen molecules in the air, and the deterioration of electrodes during use poses a problem. Furthermore, nitrogen oxides react with water in the gaseous phase to produce nitric acid. Nitric acid reacts with several metals to form nitrates. A sterilization device using high concentrations of ozone has not been put to practical use because of the lack of an efficient method for decomposing ozone and the corrosion of metals. If a medical device is altered, it cannot be used as a sterilizing device. In this study, we exposed polymeric materials, which are often used in medical instruments, to ozone and UV light to determine whether their properties changed. Elution tests were conducted on polymeric medical materials from the viewpoints of their physical and chemical properties, functional decline, and biological safety. This study investigates changes in mechanical strength and surface chemical properties, representing the physical and chemical aspects.

Open Access
Relevant
Reagent of Complex Action for Oil Transportation

Traditional methods of pipeline cleaning: scraping and heating of problem areas are quite timeconsuming and costly. Cost optimization in this area should be associated with the introduction of new high-tech technologies, as well as the use of effective domestic analogues of materials and components. Recently, the use of chemical reagents has become a method of influencing the rheological properties of the oil stream. It was found that solutions of the additive in toluene have optimal low temperature properties, which is obviously determined by its pour point (-95°C). The study of rheological properties was carried out at a low shear rate of 3.75 s-1, which corresponds to the starting loads on pumps of the oil pumping station, as well as in the range of shear rates at temperatures typical for gathering, infield and main oil transportation processes. Innovative methods for dealing with complications in oil transportation. Proposed by a number of developers, they are based on electromagnetic and ultrasonic treatment of the oil flow by stationary devices. Studies of dynamic viscosity during cooling in the temperature range from 70°C to minus 10°C made it possible to determine the depression of the saturation temperature of oil with paraffins in the presence of the developed reagent, which was 6°C, which reduces the cost of heating the oil-gathering header and infield pipeline when transporting oil in winter. At a low speed in the studied temperature range, the viscosity decreases by an average of 35%, which significantly reduces the starting loads on the pumps. This reagent may vary depending on the application conditions and reach 50% by weight. while maintaining the possibility of up to -30°C without preheating. The results show that the developed reagent effectively inhibits the formation of ASF in oils at economically reasonable concentrations of 100...200 g/m3 and is not inferior in efficiency to modern domestic and foreign analogues. On average, the intensity of the cleaning of pipes from the formed deposits will be reduced by 2.5 times.

Open Access
Relevant
Sterilization Ability by Microwave UV-ozone Generator

The 253.7 nm UV light emitted from mercury lamps is known as germicidal radiation. Additionally, it emits UV light with a shorter wavelength of 184.9 nm. This UV wavelength can generate ozone (O3) from oxygen molecules (O2) in the air. Ozone has been shown to effectively inactivate various pathogenic microorganisms. However, they must decompose quickly because they are harmful to the human body. Methods for decomposing ozone include a thermal decomposition method, a chemical cleaning method, an activated carbon method, and the like. However, there is no practical or efficient treatment method. Ozone generation methods include the silent discharge method, electrolytic method, photochemical reaction method, high-frequency discharge method, and radiation method. The most efficient method is silent discharge, which is concerned with nitrogen oxide (NOX) generation caused by nitrogen molecules in the air, and deterioration of the electrodes during use is problematic. Furthermore, nitrogen oxides react with water in the gaseous phase to produce nitric acid. Nitric acid reacts with several metals to form nitrates. A sterilization device using highconcentration ozone has not been put to practical use because of the lack of an efficient method for decomposing ozone and the corrosion of metals. The UV-ozone generation method using microwave plasma used in this study can generate UV light by applying 2.45 GHz microwaves to a quartz electrodeless bulb filled with mercury. By changing the glass material and emitting UV light at different wavelengths, it is possible to develop a UV-ozone generator that can selectively generate and decompose ozone. Furthermore, since 184.9 nm UV specifically acts on oxygen molecules, NOX is not generated. Additionally, 253.7 nm UV, which is emitted at the same time as 184.9 nm UV, can easily decompose ozone into O2

Open Access
Relevant
Analytical Methods to Develop Accurate Structural Model for the Asmari Reservoir

Crossing of Asmari can be a challenging endeavor in certain instances, particularly when dealing with structural complexities, compounded by the presence of a substantial layer of Gachsaran formation evaporates overlying the reservoir. The primary aim of this study was to establish a precise and comprehensive structural model for the Asmari reservoir. Utilizing geological logs for dip classification offers the advantage of directly depicting the structural origin. This approach helps in identifying the Asmari fault and fracture systems and their impact on production, ultimately resolving structural complexities. To investigate the reasons behind the intersection of the Kalhur member and the unexpected increase in the thickness of the Asmari formation, FMI data was acquired over the interval ranging from 1550m to 2065m. The analysis of picked bedding dips revealed abrupt variations in dip magnitude and azimuth reversals. These observations were pivotal in unraveling the structural intricacies of the reservoir. A significant fault was identified within zone five of the Kalhur member, and its interpretation suggests that it is a reverse fault. This conclusion is based on the observed dip pattern and the distinctive characteristics of the logs. Around the fault, the beds and layers exhibit elevated dips, largely attributed to the plastic nature of anhydrite and marly/shaly anhydrite within the formation. The anhydrite-indicator curve obtained from the FMI and gamma-ray logs provides further evidence that the well entered the Kalhur member after intersecting the major fault located within this particular zone. The interpretation of structural dip played a pivotal role in resolving structural complexities, leading to the precise determination of the well's location within the Asmari reservoir. This achievement was particularly critical as it enabled the well to reach the lower contact of the Asmari formation. This interpretation was facilitated by analyzing FMI images and petrophysical logs in well LL-26.

Open Access
Relevant
Study Of Using Bentonite – Poly Ethylene Glycol Composite for Metal Removal from Water

Direct polymerization of polyethylene glycol (PEG) in suspensions of Bentonite (Ben) was used for preparation of Ben-PEG composite. The prepared composite was characterized using field-effect scanning electron microscopy, surface area measurements, and X-ray diffraction. In the XRD pattern there is a change in peak intensity. But New peaks appeared. This may be due to high dispersion of particles of polymer in the Ben matrix or low concentration of the modifying agent. The crystallinity absence after loading the sorbent with cadmium and lead ions in the SEM measurement indicates that there was no crystalline phase after sorption. The optimal conditions for adsorption of Cd2+ and Pb2+ ions were found to be a PEG content of 0.2 % and a contact time of 150 min. The sorption experiments were performed under different operating variables, including, pH, adsorbent dose and initial concentration of metals. For both Cd2+ and Pb2+, Adsorption parameters were determined using both Langmuir and Freundlich isotherms, but the experimental data were better fitted to the Langmuir equation than to Freundlich equation. The adsorption equilibrium was described by the Langmuir model, which confirmed the presence of saturated mono-layer of adsorbent molecules on the adsorbent surface, that the energy of adsorption is constant. The potential of Ben-PEG composite for the removal of cadmium and lead from aqueous solution was substantiated.

Open Access
Relevant
Captan: Problems Associated with its Identification in Environmental Materials and Food Products. Potential Solutions

The study is devoted to identifying the ways in which captan can affect humans, including through the atmosphere and through food. The objects of the research were the following: the active substance (captan), air and a vegetable, namely sweet pepper. The equipment used included a chromato-mass-spectrometer «Agilent 5977А» with a gas chromatograph «Agilent Technologies-7890В», a liquid chromatograph «Agilent 1260» with a diode array detector and a liquid chromato-mass-spectrometer ExionLCAD/Qtrap 6500+. The method of gasliquid chromatography did not provide reproducible results, due to an unstable connection. Using techniques developed for the identification of captan in air, captan was determined using real samples collected during agricultural work. Captan content was reliably measured using samples taken from the air of the working environment (0,2 – 0,75 mg·m-3) and from the skin of operational staff (0,2 – 0,4 mg, using·wipes-1). In determining captan content in fruit and vegetable products, new and detailed methodological approaches were developed in order to minimise the matrix effect: a calibration curve was created based on the control matrix sample. The detection limit for captan was established at 0,01 mg·kg-1. In the analysis of actual sweet pepper samples, captan content was found to be below the detection limit.

Open Access
Relevant