Sort by
Effect of Cucurbit Host, Production Region, and Season on the Population Structure of Pseudoperonospora cubensis in Florida.

Pseudoperonospora cubensis, the causal agent of Cucurbit downy mildew (CDM), is one of the most important diseases affecting cucurbit production in the United States. This disease is especially damaging to Florida production areas, as the state is a top producer of many cucurbit species. In addition, winter production in central and south Florida likely serves as a likely source of P. cubensis inoculum for spring and summer cucurbit production throughout the eastern United States, where CDM is unable to overwinter in the absence of a living host. Over 2 years (2017 and 2018) and four seasons (spring 2017, spring 2018, fall 2017, and fall 2018), 274 P. cubensis isolates were collected from cucurbit hosts at production sites in south, central, and north Florida. The isolates were analyzed with 10 simple sequence repeat (SSR) markers to establish population structure and genetic diversity and further assigned to a clade based on a qPCR assay. Results of population structure and genetic diversity analyses differentiated isolates based on cucurbit host and clade (1 or 2). Of the isolates assigned to clade by qPCR, butternut squash, watermelon, and zucchini were dominated by clade 1 isolates, whereas cucumber isolates were split 34 and 59% between clades 1 and 2, respectively. Clade assignments agreed with isolate clustering observed within discriminant analysis of principal components (DAPC) based on SSR markers, although watermelon isolates formed a group distinct from the other clade 1 isolates. For seasonal collections from cucumber at each location, isolates were typically skewed to one clade or the other and varied across locations and seasons within each year of the study. This variable population structure of cucumber isolates could have consequences for regional disease management. This is the first study to characterize P. cubensis populations in Florida and evaluate the effect of cucurbit host and clade-type on isolate diversity and population structure, with implications for CDM management in Florida and other United States cucurbit production areas.

Relevant
Dark waters: Evaluating seagrass community response to optical water quality and freshwater discharges in a highly managed subtropical estuary

Seagrass communities are vitally important ecosystems that support and foster organisms across trophic levels. Understanding the drivers of seagrass distribution and extent in estuary systems is valuable for conservation and restoration efforts. A critical driver of seagrass distribution is how light moves through the water column (i.e. light attenuation) and the availability of light to reach the estuary bottom. Light attenuation combined with the depth of seagrass colonization is used to estimate the percent surface irradiance and is an indicator of seagrass light requirements The objective of this study was to evaluate optical water quality parameters within the Caloosahatchee River Estuary (CRE) relative to changes in freshwater discharge conditions. During the study period, freshwater discharge significantly increased resulting in an increase of annual stressful and damaging discharge events to marine seagrass species. Concurrent with changes in freshwater discharge conditions, changes to optical water quality parameters including color, chlorophyll-a, total suspended solids, and light attenuation were detected along the estuary. Using photo-interpreted seagrass coverage data combined with bathymetric data, the depth of colonization was estimated for three survey years (2008, 2014, and 2020). This information combined with a spatial and temporal light attenuation generalized additive model percent surface irradiance (%SI) was estimated. Over the study period, %SI significantly increased across the lower CRE indicating an improvement in light attenuation. The current freshwater management plan has increased stressful and damaging discharge events, however recent changes in operations has minimized these damaging events which could be linked to the precipitous increase in %SI across the lower CRE. Seagrass density data collected from transects within the estuary suggest that prolonged stress and damaging (>5.13 hm3d−1) has significantly reduce species density. Future water management strategies are expected to reduce the frequency and volume of discharges to the CRE, effectively reducing stress and damaging freshwater discharge event.

Open Access
Relevant
DNA degradation in Haplaxius crudus (Hemiptera: Cixiidae) and Diaphorina citri (Hemiptera: Liviidae) on yellow sticky traps in Florida.

Lethal bronzing (LB) and huanglongbing (HLB) are harmful plant diseases causing significant economic losses in Florida agriculture. Both diseases are caused by bacteria that are transmitted by Hemipteran insect vectors. Accurate detection of pathogens within insect vectors can help provide a better understanding of disease epidemiology. Monitoring of the vector of LB is done primarily using sticky traps within palm canopies. However, it is unknown how long pathogen and vector DNA remain intact under field conditions. If significant DNA degradation takes place over the course of days or weeks, there is a possibility of false negatives occurring when detecting pathogens from these surveys. This study determined how long Haplaxius crudus Van Duzee (Hemiptera: Cixiidae) and LB DNA could remain detectable on sticky traps under field conditions in Florida in winter and summer, using PCR and qPCR. Additionally, this study compared the DNA degradation of Diaphorina citri Kuwayama (Hemiptera: Liviidae) and Candidatus Liberibacter asiaticus (CLas), the causal agent of HLB. The results showed that DNA concentration and amplification rate declined as time on sticky traps increased. Degradation varied between different target genes. The amplification rate of insect genes from sticky trap samples suggests that sticky traps should be changed weekly in summer, and every 2 wk in winter for accurate H. crudus detection. Traps should be changed every 4 days for phytoplasma detection. Traps can be changed monthly for accurate D. citri and CLas detection. Based on these results, standard monitoring protocols can be implemented to more accurately detect vectors and pathogens.

Open Access
Relevant
Abiotic mineralization of dissolved organic phosphorus for improved nutrient retention in a large-scale treatment wetland system

The Everglades Stormwater Treatment Areas (STAs) in South Florida are large treatment wetlands that were constructed and managed to reduce phosphorus (P) loads to the Everglades Protection Area. Most P in inflow waters originates from urban, agricultural, and equestrian runoff, as well as discharges from Lake Okeechobee. To effectively reduce dissolved organic P (DOP) in the outflow of the STAs, DOP must be mineralized to soluble reactive phosphorus (SRP) (Ged and Boyer, 2013), and then removed through uptake by aquatic vegetation or co-precipitation with calcite during photosynthesis. In order to explore the effects of sunlight and photolytic processing on dissolved P mineralization within the STAs, a series of photochemical experiments were conducted. First, DOM entering the STAs was measured and found to be highly aromatic (mean SUVA = 0.38) and dominated by large molecular weight molecules (75% of bulk DOM > 10KDa) that are reactive to photolytic degradation. Model molecules, such as phytic acid, and site water from the STAs were exposed to light and produced SRP from DOP after exposure to high energy UV radiation. Additionally, analysis of excitation emission matrices (EEM) found that aromatic and humic structures were photolytically degraded during UV exposure. These findings suggest that photolysis is a significant process in DOM and P cycling in the STAs, and if leveraged in SAV dominated areas, could benefit P removal by co-precipitation with calcite. These findings suggest that vegetation management strategies could be employed to maximize UV photolytic reactions to optimize P retention.

Relevant