Sort by
Enhancment of zebrafish (Danio rerio) immune and antioxidant systems using medicinal plant extracts encapsulated in alginate-chitosan nanocapsules with slow sustained release.

This study aimed to screen 10 medicinal plant extracts on zebrafish (Danio rerio), evaluating their impact on the complement system, immunoglobulin M (IgM) levels, lysozyme, and peroxidase activity, while also enhancing their efficacy through the gradual release using alginate-chitosan nanocapsules. The prepared methanolic extracts were combined with fish feed. The fish were divided into 12 groups, including 10 treatment groups, a positive and a negative control group. Results showed varying impacts of the extracts on the immune and antioxidant systems, with Cinnamon (Cinnamon cassia) and Hypericum (Hypericum perforatum) extracts demonstrating the most significant effects. Subsequently, Cinnamon and Hypericum extract were encapsulated in alginate-chitosan nanocapsules to assess their impact on zebrafish immune parameters, separately and synergistically. Gradual release of the extracts from the nanocapsules was observed, with slower release at pH 2 compared to pH 7. Overall, Cinnamon and Hypericum extracts exhibited substantial immune system enhancement, and their encapsulation in nanocapsules improved their effects on zebrafish immune parameters. These findings suggest using these encapsulated extracts to enhance immune responses in aquatic organisms.

Relevant
Investigation of effect peripheral kisspeptin treatment on hypothalamo-pituitary-gonadal axis and hypothalamo-pituitary-adrenal axis in male rats.

Kisspeptin is an endogenous peptide hormone that is the most potent stimulator of the hypothalamo-pituitary-gonadal (HPG) axis. The HPG axis can be suppressed by the activation of the hypothalamo-pituitary-adrenal (HPA) axis. The physiological role of kisspeptin in the interaction of the HPG axis and the HPA axis is not fully understood yet. The purpose of the current study was to investigate the possible effects of peripheral injection (intraperitoneally) of kisspeptin on HPG axis and HPA axis activity as well. Adult male Wistar rats were randomly divided into seven groups as sham (control), kisspeptin(10nmol), p234 (10nmol), kisspeptin + p234, kisspeptin + antalarmin (10mg/kg), kisspeptin + astressin2b (100μg/kg), and kisspeptin + atosiban (0.250mg/kg) (n = 10 each group). At the end of the experiment, the hypothalamus, pituitary gland, and serum samples of the rats were collected. Serum follicle-stimulating hormone and luteinizing hormone levels of the kisspeptin, kisspeptin + antalarmin and kisspeptin + astressin2b groups were significantly higher than the control group. Serum testosterone levels were significantly higher in the kisspeptin, kisspeptin + antalarmin, kisspeptin + astressin2b, and kisspeptin + atosiban groups that compared to the control group. There was no a significant difference in corticotropic releasing hormone immunoreactivity in the paraventricular nucleus of the hypothalamus, serum adrenocorticotropic hormone and corticosterone concentrations among all groups. Moreover, no significant difference was found in the concentration of pituitary oxytocin. Our results suggest that peripheral kisspeptin injection induces an activation in the HPG axis, but not in the HPA axis in male rats.

Relevant
Characterisation of the complete chloroplast genome of Solanum tuberosum cv. White Lady

AbstractPotato (Solanum tuberosum) is considered worldwide as one of the most important non-cereal food crops. As a result of its adaptability and worldwide production area, potato displays a vast phenotypical variability as well as genomic diversity. Chloroplast genomes have long been a core issue in plant molecular evolution and phylogenetic studies, and have an important role in revealing photosynthetic mechanisms, metabolic regulations and the adaptive evolution of plants. We sequenced the complete chloroplast genome of the Hungarian cultivar White Lady, which is 155 549 base pairs (bp) in length and is characterised by the typical quadripartite structure composed of a large- and small single-copy region (85 991 bp and 18 374 bp, respectively) interspersed by two identical inverted repeats (25 592 bp). The genome consists of 127 genes of which 82 are protein-coding, eight are ribosomal RNAs and 37 are transfer RNAs. The overall gene content and distribution of the genes on the White Lady chloroplast was the same as found in other potato chloroplasts. The alignment of S. tuberosum chloroplast genome sequences resulted in a highly resolved tree, with 10 out of the 13 nodes recovered having bootstrap values over 90%. By comparing the White Lady chloroplast genome with available S. tuberosum sequences we found that gene content and synteny are highly conserved. The new chloroplast sequence can support further studies of genetic diversity, resource conservation, evolution and applied agricultural research. The new sequence can support further potato genetic diversity and evolutionary studies, resource conservation, and also applied agricultural research.

Open Access
Relevant
Effect of salt stress on plant regeneration efficiency in primed and non-primed seed's calli of rice (Oryza sativa L.) variety Swarna.

This study leads with the primed seeds of rice (var. Swarna) with distilled water (D.W.) and various concentrations of Mg(NO3)2 (0-8mM)/Kinetin (0-5ppm) alone or in combination with screen out the regeneration medium induced tolerance level of NaCl. To fulfill the objective, the primed and non-primed rice seeds were inoculated in MS medium supplemented with 30gL-1 maltose + 1gL-1 casein hydrolysate and 2mgL-1 of 2,4-D for callus induction and cultured up to 45days in two sets: one set for regeneration purpose in NaCl-induced regeneration medium and another set was used to study the physiological potentiality of the callus. The 45-day-old calli were transferred into regeneration medium MSR (MS medium for regeneration) (BAP: NAA: Kinetin = 4:1:1) containing NaCl with a concentration range of 0 to 300mM. The number of regenerating calli and shoot regeneration percentage, number of plantlets obtained from one callus, recovery of plantlets from each concentration of NaCl and proline estimation from the leaf of the regenerated plantlets were determined from one set obtained after 45days. The calli obtained from another set after 45days, the frequencies of total and embryogenic calli induction percentage, fresh and dry weights, proline content, nitrate reductase and superoxide dismutase activities were measured. The calli obtained from 2.5ppm kinetin + 4mMMg(NO3)2 primed seeds were showed best result as compared to the other treatments for the above-mentioned parameters in different concentrations of NaCl-induced medium and survive up to 200mM concentrations of NaCl.

Relevant
Field test of a bioaugmentation agent for the bioremediation of chlorinated ethene contaminated sites.

Chlorinated ethenes are toxic compounds that were widely used in the past, and their improper handling and storage caused notable pollutions worldwide. In situ bioremediation by reductive dechlorination of bacteria is a cost-effective and ecologically friendly way to eliminate these pollutions. During the present study, the efficiency of a previously developed bioaugmentation agent combined with biostimulation was tested under field conditions in contaminated soil. Furthermore, the preservation of dechlorinating ability was also investigated in a long-term experiment. Initially, aerobic conditions were present in the groundwater with possible presence of anaerobic micro-niches providing habitat for Brocadia related anammox bacteria. "Candidatus Omnitrophus" was also identified as a dominant member of community then. Significant changes were detected after the biostimulation, anaerobic conditions established and most of the dominant OTUs were related to fermentative taxa (e.g. Clostridium, Trichococcus and Macillibacteroides). Dominant presence of vinyl-chloride coupled with the lack of vinyl-chloride reductase gene was observed. The most notable change after the bioaugmentation was the significant decrease in the pollutant quantities and the parallel increase in the vcrA gene copy numbers. Similar to post-biostimulation state, fermentative bacteria dominated the community. Bacterial community composition transformed considerably with time after the treatment, dominance of fermentative-mainly Firmicutes related-taxa decreased and chemolithotrophic bacteria became abundant, but the dechlorinating potential of the community remained and could be induced by the reappearance of the pollutants even after 4 years.

Open Access
Relevant