Sort by
Magnification calibration of X-ray 3D microscopy using micro-line structures.

X-ray microscopy using computed tomography (CT) is an excellent three-dimensional imaging instrument. Three-dimensional X-ray microscopy (3DXRM) is a nondestructive imaging technique used to inspect internal and external structures in units of submicrometers or less. The 3DXRM, although attractive, is mostly used as an observation instrument and is limited as a measurement system in quantitative evaluation and quality control. Calibration is required for use in measurement systems such as coordinate measurement systems, and specific standard samples and evaluation procedures are needed. The certified values of the standard samples must ideally be traceable to the International System of Units (SI). In the 3DXRM measurement system, line structures (LSs) are fabricated as prototype standard samples to conduct magnification calibration. In this study, we evaluated the LS intervals using calibrated cross-sectional scanning electron microscopy (SEM). A comparison of the evaluation results between SEM and 3DXRM for the LS intervals provided the magnification calibration factor for 3DXRM and validated the LSs, whereby the interval methods and feasibility of constructing an SI traceability system were evaluated using the calibrated SEM. Consequently, a magnification calibration factor of 1.01 was obtained for 3DXRM based on the intervals of the LSs evaluated by SEM. A possible route for realizing SI-traceable magnification calibration of 3DXRM has been presented.

Just Published
Relevant
Near-field electron ptychography using full-field structured illumination.

A new configuration for near-field ptychography using a full-field illumination with a structured electron beam is proposed. A structured electron beam illuminating the entire field of view is scanned over the specimen, and a series of in-line holograms formed in the near-field region below the specimen are collected. The structured beam is generated by a conductive film with random openings, which ensures high stability and coherence of the beam. Observation in the near-field region reduces the beam concentration that occurs in the far-field region, which contributes to accurate recording of the beam intensity with a finite dynamic range of the detectors. The use of full-field illumination prevents the accumulation of errors caused by concatenating the local structures, which is the method used in conventional reconstruction. Since all holograms are obtained from the entire field of view, they have uniform multiplicity in terms of specimen information within the field of view. This contributes to robust and efficient reconstruction for a large field of view. The proposed method was tested using both simulated and experimental holograms. For the simulated holograms, the reconstruction of the specimen transmission function was achieved with an error less than 1/3485 of the wavelength. The method was further validated using experimental holograms obtained from MgO particles. The reconstructed phase transmission function of the specimen was consistent with the specimen structure and was equivalent to a mean inner potential of V on the MgO particle, which is in close agreement with previously reported values.

Open Access
Relevant
Deciphering prefrontal circuits underlying stress and depression: exploring the potential of volume electron microscopy.

Adapting to environmental changes and formulating behavioral strategies are central to the nervous system, with the prefrontal cortex being crucial. Chronic stress impacts this region, leading to disorders including major depression. This review discusses the roles for prefrontal cortex and the effects of stress, highlighting similarities and differences between human/primates and rodent brains. Notably, the rodent medial prefrontal cortex is analogous to the human subgenual anterior cingulate cortex in terms of emotional regulation, sharing similarities in cytoarchitecture and circuitry, while also performing cognitive functions similar to the human dorsolateral prefrontal cortex. It has been shown that chronic stress induces atrophic changes in the rodent mPFC, which mirrors the atrophy observed in the subgenual anterior cingulate cortex and dorsolateral prefrontal cortex of depression patients. However, the precise alterations in neural circuitry due to chronic stress are yet to be fully unraveled. The use of advanced imaging techniques, particularly volume electron microscopy, is emphasized as critical for the detailed examination of synaptic changes, providing a deeper understanding of stress and depression at the molecular, cellular and circuit levels. This approach offers invaluable insights into the alterations in neuronal circuits within the medial prefrontal cortex caused by chronic stress, significantly enriching our understanding of stress and depression pathologies.

Relevant