Sort by
Multi-User Auxiliary Signal Superposition Transmission (MU-AS-ST) for Secure and Low-Complexity Multiple Access Communications

Beyond 5G (B5G) and future 6G systems are expected to serve a massive number of interconnection links between base stations and Internet of Thing (IoT) devices. Thus, it is critical to develop new effective multiple access techniques, which can serve the demands of this massive number of connections. In this regard, power domain non-orthogonal multiple access (PD-NOMA), which was studied extensively by both academia and industry, was perceived as a potential candidate to the problem of serving more devices while having limited resources; however, the PD-NOMA design was eliminated from the list of the 17th release of 3GPP work items. Even though PD-NOMA proves efficient compared to OMA systems in certain scenarios and under specific conditions, it suffers from many issues including: low reliability due to having inter-user-interference, security vulnerability to both internal and external eavesdropping, the complexity of the transceiver due to the use of successive interference cancellation (SIC), and the inapplicability in power-balanced scenarios, where the superimposed users have the same distance from the base station. To address the aforementioned problems related to PD-NOMA, in this work, we propose and develop a novel new alternative non-orthogonal transmission design through the use of specially designed auxiliary signals superimposed with the users’ data. The proposed design is termed and coined as MU-AS-ST (Multi-User Auxiliary Signal Superposition Transmission) and is featured with a very simple transceiver design, where all the processing is done at the base station, thus freeing the receiver from any complex processing. The offered advantages by the proposed design make from it an ideal candidate for low-power and processing-limited devices such as IoT applications.

Open Access
Relevant
Hybrid MIMO: A New Transmission Method For Simultaneously Achieving Spatial Multiplexing and Diversity Gains in MIMO Systems

Multiple input multiple output (MIMO) technology has evolved over the past few years into a technology with great potential to drive the direction of future wireless communications. MIMO technology has become a solid reality when massive MIMO systems (MIMO with large number of antennas and transceivers) were commercially deployed in several countries across the world in the recent past. Moreover, MIMO has been integrated into state-of-the-art paradigms such as fifth-generation (5G) networks as one of the main enabling technologies. MIMO possesses many attractive and highly desirable properties such as spatial multiplexing, diversity gains, and adaptive beamforming gains that leads to high data rates, enhanced reliability, and other enhancements. Nevertheless, beyond 5G technologies demand wireless communication systems with, among other properties, immensely higher data rates and better reliability simultaneously at the same time. In this work, a new, novel MIMO technique for simultaneously achieving multiplexing and diversity gains as well as completely eliminating any processing at the MIMO receiver, leading to advantages such as low complexity and low power consumption, is proposed. The proposed technique employs the design of interference-canceling matrices, which are calculated from the channels between the transceiver antennas, where the matrices are employed at the base station to help achieve multiplexing and diversity gains simultaneously. The novelty and efficiency of the introduced paradigm is demonstrated via mathematical models and validated by Monte Carlo simulations. Results indicate that the proposed system outperforms conventional MIMO models.

Open Access
Relevant
Biology, Adaptability, and The Economic Applications of Tardigrades In Future

Tardigrades are small microscopic creatures also known as moss piglets or water bears. They are extremophiles and well known for its survivability. After successfully ruling the space tardigrades are now expected to save lives. From being a ‘survivor’ tardigrade is now headed to be a ‘savior’. This survivability is due to a special type of sugar known as “Trehalose”. Trehalose can be found in extremophiles organisms including tardigrades. The unique feature of this sugar is the ability to preserve biological molecules. One of the big applications of the tardigrades are the “dry vaccine”. Our world is struggling through a big crisis of covid-19 vaccine, it is next to impossible to make the highest demanded vaccine available to every corner of the earth at the low-temperature range in such a short period of time, and according to WHO half of the vaccines get wasted due to the cold chain method So, we can implement these dry vaccines for covid-19, to reduce the freezing cost, increasing the shelf life of vaccine and make every vaccine reach to needy in a live condition. Now, trehalose is not only confined to preserve vaccines but this can help in preserve the organs that are going to be used either for transplantology or organ donation. This special protein is yet to give a new turn to not only the medical field and to save human life but tardigrades can be implemented for plants in increasing the tolerance to a stressful environment for future climate changes and space settlement hence this paper provides an overview regarding the application and economical aspects of the tardigrades

Open Access
Relevant
Smart Health Monitoring and Management Using Internet of Things, Artificial Intelligence with Cloud Based Processing

: Smart health monitoring system is a system that shortens the distance between a patient and the relevant medical organization. These systems have rapidly evolved during the past two decades and have the potential to change the way health cases are currently delivered. The Internet of Things (IoT) is an innovation for smart health management. It provides monitoring patients remotely and guarantees giving patients the medication and getting complete health care without the latter getting infected. As we know that the NovelCorona-virus also known as covid-19 expanded its impacts from China and still expands its catchment, national as well as international measures are being taken to contain the outbreak such as the placing of lockdown in nations. As a result, many people are being infected making the hospital incapable of providing proper healthcare. This paper proposes a smart health system that monitors the patients holding the coronavirus remotely and to protect the lives of the health service members (like physicians, nurses) from infection. This smart system observes patients by using sensors, to gather rich information every minute seconds. This benefits the patient as well as the service members because the physicians can observe the patient while freeing up beds in the hospitals for the critical cases.

Open Access
Relevant