Sort by
Multiuser-MISO Precoding Under Channel Phase Uncertainty in Satellite Communication Systems

Linear and symbol-level precoding in satellite communications have received increasing research attention thanks to their ability to tackle inter-beam interference, allowing the use of spectral resources more efficiently. However, there are still challenges and open questions regarding the implementation of practical precoding systems taking the phase uncertainties in estimating the channel state information into account. This work assesses the impact of phase variations and uncertainties inherent to the satellite communication system operating a precoded forward link. Specifically, we address the inability to measure at the user terminal, the absolute phase rotation introduced by the channel, and the transponder local oscillator phase noise effects on the precoding operations considering the use of frequency division multiplexing in the forward-uplink transmission. We formally demonstrate that the system performance for linear and non-linear precoding operations is not affected by the uncertainty in the phase measurements at the user terminal. Additionally, we show that using a single frequency reference for all the local oscillators at the transponder does not avoid the phase variations related to the frequency division multiplexing in the forward-uplink. This work demonstrates that these phase variations would not affect the system performance for an ideal zero-delay precoding loop. However, this is not feasible in practical scenarios, where the phase noise of the frequency reference at the transponder and the loop delay determine the impact on the system performance. We validate our results by simulations considering three frequency references with different stability levels in a typical geosynchronous orbit (GEO) satellite system. Our results suggest that practical implementations of multiuser-MISO precoding systems must include a differential phase synchronization loop to compensate for this performance degradation.

Open Access
Relevant
Interoperability governance

Interoperability has become a crucial value in European e-government developments, as promoted by the Digital Single Market strategy and the Tallinn Declaration. The European Union and its Member States have made considerable investments in improving the understanding of interoperability and in developing interoperable building blocks to support cross-border data exchange and public service provisioning. This includes recent updates of the European Interoperability Framework (EIF) and European Interoperability Reference Architecture (EIRA), as well as the publication of a number of generic and domain specific architecture and solutions building blocks such as digital identification or electronic delivery services. While in the previous version of the EIF, interoperability governance was not clearly developed, the new version of 2017 puts interoperability governance as a concept that spans across the different interoperability layers (legal, organizational, semantic and technical) and that builds the frame for interoperability overall. In this paper, we develop a definition of interoperability governance from a literature review and we put forward a model to investigate interoperability governance models at European and Member State levels. Based on several case studies of EU institutions and Member States, we could draw recommendations for what the key aspects of interoperability governance are to successfully diffuse interoperability into public service provisioning.

Open Access
Relevant