Sort by
Simultaneous Detection of Clenbuterol and Higenamine in Urine Samples Using Interference-Free SERS Tags Combined with Magnetic Separation.

Sports doping remains a significant challenge in competitive sports. Given that urine analysis is the standard for detecting doping, developing rapid, sensitive, accurate, and high-throughput methods for stimulant detection in urine is crucial. Surface-enhanced Raman scattering (SERS) tag-based immunoassays have emerged as powerful analytical tools known for their high sensitivity and specificity, holding particular promise for stimulant detection in urine samples. However, both the Raman signals of typical SERS tags and sample matrices are within the Raman fingerprint region (<1800 cm-1), which could lead to spectrum overlap, potentially reducing detection accuracy and sensitivity. By recognizing this, we designed a competitive immunoassay that integrates two types of zero-background SERS tags and magnetic separation. These innovative SERS tags exhibit distinctive Raman peaks within the Raman-silent region (1800-2800 cm-1), effectively mitigating potential spectrum overlap with background sample signals. Moreover, magnetic separation not only enhances operational simplicity but also improves the system's anti-interference capability. Using clenbuterol (CL) and higenamine (HM) as model targets, the SERS-based competitive immunoassay demonstrated sensitive detection of individual CL or HM standards, with limits of detection (LODs) of 0.87 and 0.71 pg/mL, respectively. In multiplex mode, CL and HM can be simultaneously detected with LODs of 1.0 and 0.81 pg/mL, respectively. Furthermore, the recovery rates in urine samples ranged from 83 to 116% (relative standard deviation, RSD ≤ 6.4%) for CL and from 82 to 103% (RSD ≤ 5.1%) for HM, further confirming the reliability of the SERS-based immunoassay for practical applications.

Just Published
Relevant
Real-Time Visualization of HIV-1 RNA Detection Using Loop-Mediated Isothermal Amplification-Enabled Particle Diffusometry.

Isothermal nucleic acid amplification tests, NAATs, such as reverse transcription-loop-mediated isothermal amplification (RT-LAMP), offer promising capabilities to perform real-time semiquantitative detection of viral pathogens. These tests provide rapid results, utilize simple instrumentation for single-temperature reactions, support efficient user workflows, and are suitable for field use. Herein, we present a novel and robust method for real-time monitoring of HIV-1 RNA RT-LAMP utilizing a novel implementation of particle diffusometry (PD), a diffusivity quantification technique using fluorescent particles, to quantify viral concentration in nuclease-free water. We monitor changes in particle diffusion dynamics of 400 nm fluorescently labeled particles throughout the RT-LAMP of HIV-1 RNA in nuclease-free water, enabling measurement within 20 min and detection of concentrations as low as 25 virus particles per μL. Moreover, in a single-blind study, we demonstrate semiquantitative detection by accurately determining the initial concentration of an unknown HIV-1 RNA within a 10% absolute error margin. These results highlight the potential of real-time PD readout for quantifying HIV-1 RNA via RT-LAMP, offering promise for viral load monitoring of HIV and other chronic infections.

Just Published
Relevant
A Nitric Oxide-Sensing T1 Contrast Agent for In Vivo Molecular MR Imaging of Inflammatory Disease.

Nitric oxide (NO) is a signaling molecule that not only appears in the very early stage of inflammatory disease but also persists in chronic conditions. Its detection in vivo can, therefore, potentially enable early disease detection and treatment monitoring. Due to its transient nature and low abundance, however, noninvasive and deep-tissue imaging of NO dynamics is challenging. In this study, we present a magnetic resonance imaging (MRI) contrast agent based on a manganese porphyrin for specific imaging of NO. This agent is activated by NO, binds to tissue protein, accumulates so long as NO is actively produced, and confers a substantial bright contrast on T1-weighted MRI. In vitro tests confirm the specificity of activation by NO over other reactive oxygen or nitrogen species, absence of inflammation induced by the contrast agent, and sensitivity to NO levels in the tens of micromolar. In vivo demonstration in a mouse model of stress-induced acute myocardial inflammation revealed an over 2.2-times increase in T1 reduction in the inflamed heart compared to a healthy heart. This new NO-activatable T1 contrast agent holds the potential to provide early diagnosis of inflammatory disease, characterize different stages of inflammation, and ultimately guide the design of novel anti-inflammation therapeutics.

Just Published
Relevant
Calix[6]arene-Functionalized Photonic Hydrogel Biosensor for Naked-Eye Cholesterol Detection Based on Supramolecular Host-Guest Interactions.

Cholesterol (CHO) is an essential constituent of human cellular tissues and a crucial activity indicator for the clinical diagnosis and prevention of various diseases. Abnormal CHO levels can lead to various cardiovascular diseases, including coronary heart disease, cerebral thrombosis, and atherosclerosis. Thus, developing simple and effective methods for CHO detection is of great significance. Herein, a novel calix[6]arene-modified photonic hydrogel biosensor (PAAH@SCX6) was developed for naked-eye monitoring of CHO based on supramolecular host-guest interactions between 4-sulfocalix[6]arene (SCX6) and CHO molecules. This sensor was constructed by embedding Fe3O4 colloidal nanocrystal cluster chains into a poly(acrylamide-co-acrylic acid) smart hydrogel (PAAH), followed by incorporation of plentiful SCX6 units into the PAAH via hydrogen bonding interactions. The specific recognition of SCX6 to CHO leads to the volume expansion of the hydrogel, causing a shift in the photonic band gap and a change in the hydrogel's structural color. The sensor demonstrated a linear detection range of 2.83-5.20 mM, covering the typical CHO levels in the human body. Importantly, the PAAH@SCX6 biosensor showed high selectivity and satisfactory stability, making it highly suitable for practical applications. Such a photonic hydrogel-based biosensor provides a convenient, simple, and efficient strategy for visual CHO detection.

Just Published
Relevant
Nanozyme-Based Pump-free Microfluidic Chip for Colorectal Cancer Diagnosis via Circulating Cancer Stem Cell Detection.

Circulating cancer stem cells (CCSCs) are subpopulations of cancer cells with high tumorigenicity, chemoresistance, and metastatic potential, which are also major drivers of disease progression. Herein, to achieve the prediction of tumor diagnosis and progression in colorectal cancer (CRC), a new, automated, and portable lateral displacement patterned pump-free (LP) microfluidic chip (LP-chip) with the CoPt3 nanozyme was established for CCSC capture and detection in peripheral blood and feces samples ex vivo. In this design, CoPt3@HA probes with functions of magnetic separation and colorimetric signal transduction by peroxidase-mimicking activity were applied for the capture of CCSCs and signal output in clinical samples. The generated colors of polydopamine (PDA) were quantifiable through the smartphone APP and visualizable by the naked eye in the test line (T line) and control line (C line) of the LP-chip. In the optimal experimental conditions, the CCSC concentration was sensitive to change in the range 0-105 cells mL-1, with a detection limit of 3 cells mL-1 (S/N = 3). Preliminary studies of clinical samples suggest that the platform has the potential for prediction of colorectal cancer progression and poor prognosis. Overall, the LP-chip provides potential strategies for timely diagnosis, therapeutic monitoring, and recurrence prediction to improve home-based patient care.

Just Published
Relevant
Dual-Activated Photoacoustic Probe for Reliably Detecting Hydroxyl Radical in Ischemic Cardiovascular Disease in Mouse and Human Samples.

Cardiovascular disease (CVD) is a chronic disease characterized by the accumulation of lipids and fibrous tissue within the arterial walls, potentially leading to vascular obstruction and an increased risk of heart disease and stroke. Hydroxyl radicals play a significant role in the formation and progression of CVD as they can instigate lipid peroxidation, resulting in cellular damage and inflammatory responses. However, precisely detecting hydroxyl radicals in CVD lesions presents significant challenges due to their high reactivity and short lifespan. Herein, we present the development and application of a novel activatable optical probe, Cy-OH-LP, designed to detect hydroxyl radicals in lipid-rich environments specifically. Built on the Cy7 molecular skeleton, Cy-OH-LP exhibits near-infrared absorption and fluorescence characteristics, and its specific response to hydroxyl radicals enables a turn-on signal in both photoacoustic and fluorescence spectra. The probe demonstrated excellent selectivity and stability in various tests. Furthermore, Cy-OH-LP was successfully applied in an in vivo model to detect hydroxyl radicals in mouse models, providing a potential tool for diagnosing and monitoring AS. The biosafety of Cy-OH-LP was also verified, showing low cytotoxicity and no significant organ damage in mice. The findings suggest that Cy-OH-LP is a promising tool for the specific detection of hydroxyl radicals in lipid-rich environments, providing new possibilities for research and clinical applications in the field of oxidative stress-related diseases.

Just Published
Relevant