Sort by
Molecular cloning and functional study of a Rel homologous gene in sea urchin Strongylocentrotus intermedius

NF-κB (Nuclear factor-kappa B) family proteins are versatile transcription factors that play crucial regulatory roles in cell development, growth, apoptosis, inflammation, and immune response. However, there is limited research on the function of these key genes in echinoderms. In this study, an NF-κB family gene (SiRel) was identified in sea urchin Strongylocentrotus intermedius. The gene has an open reading frame length of 1809 bp and encodes for 602 amino acids. Domain prediction results revealed that the N-terminal of SiRel protein encodes a conserved Rel homology domain (RHD), including the RHD-DNA binding domain and the RHD-dimerization domain. Multiple sequence comparison results showed that the protein sequences of these two domains were conserved. Phylogenetic analysis indicated that SiRel clustered with Strongylocentrotus purpuratus p65 protein and Rel protein of other echinoderms. Results from quantitative real-time PCR demonstrated detectable SiRel mRNA expression in all tested sea urchin tissues, with the highest expression level found in the gills. And SiRel mRNA expression levels were significantly induced after LPS (Lipopolysaccharide) and poly(I:C) (Polyinosinic:polycytidylic acid) stimulation. In addition, SiRel protein expression can be found in cytoplasm and nucleus of HEK293T cells. Co-immunoprecipitation results showed that SiRel could interact with sea urchin IκB (Inhibitor of NF-κB) protein. Western blotting and dual-luciferase reporter gene assay results indicated that overexpression of SiRel in HEK293T cells could impact the phosphorylation levels of JNK (c-Jun N-terminal kinase) and Erk1/2 (Extracellular signal-regulated kinases1/2) and activate interleukin-6 (IL-6), activating protein 1 (AP-1), interferon (IFN)α/β/γ, and signal transducer and activator of transcription 3 (STAT3) reporter genes in HEK293T cells. In conclusion, this study reveals that SiRel plays an important role in the innate immune response of sea urchins and enriches our understanding of comparative immunology theory.

Just Published
Relevant
Oral administration of recombinant Lactococcus lactis expressing largemouth bass (Micropterus salmoides) IFNa3 protein enhances immune response against largemouth bass virus (LMBV) infection

Largemouth bass virus (LMBV) is a highly pathogenic pathogen that often causes high mortality of affected largemouth bass and significant financial losses. Type I interferon as an effective and broad spectrum tool has been successfully used for therapeutic or prophylactic treatment some viral infections. However, the implementation of immunotherapies based on interferon administration to combat LMBV infections has not been reported. And Lactic Acid Bacteria (LAB) are a powerful vehicle for expressing cytokines or immunostimulant peptides at the gastrointestinal level after oral administration. In this study, Lactococcus lactis (L. lactis) expression system with lactose as a screening marker was utilized to express the Micropterus salmoides interferon a3 (IFNa3) protein and orally administered to largemouth bass. The genetically engineered strain pNZ8149-Usp45-IFNa3-6His/L. lactis NZ3900 was successfully constructed, and its potential to elicit immune protection response by oral administration was evaluated. After orally administration, the recombinant L. lactis was detected in guts of experimental fish and remained detectable for 72 h. Additionally, IFNa3 was able to enhance the test fish’s immune response, as determined by the relatively increased mRNA relative expression of immune-related genes in the liver, spleen, and kidney tissues, including IFN-γ, TNF-α, IL-1β, IL-8, IgM and IgT. Following LMBV challenge, the experiment group of pNZ8149-Usp45-IFNa3-6His/L. lactis NZ3900 exhibited a 70% survival rate, while survival rate were 15% in the PBS control group, 45% in the pNZ8149/L. lactis NZ3900 group. Furthermore, the viral load in the surviving fish was significantly lower than that of the control groups. These findings suggest that oral administration of recombinant L. lactis producing IFNa3 induces largemouth bass immune responses at a systemic level to effective prevent and combat of LMBV infection.

Just Published
Relevant
A naturaly attenuated largemouth bass ranavirus strain provided protection for Micropterus salmoides by immersion immunization

Largemouth bass ranavirus (LMBV) causes disease outbreaks and high mortality at all stages of largemouth bass farming. Therefore, live vaccine development is critical for largemouth bass prevention against LMBV by immersion immunization. Herein, an attenuated LMBV strain with good immunogenicity, designated as LMBV-2007136, was screened from the natural LMBV strains bank through challenge assay and immersion immunization experiment. After determing the safe concentration range of LMBV-2007136, the minimum immunizing dose of immersion immunization was verified. When largemouth bass were vaccinated by immersion at the lowest concentration of 102.0 TCID50/mL, all of fish were survival post virulent LMBV challenge, and the relative percent survival (RPS) was 100%. And the immune gene expression levels of IL-10, IL-12, IFN-γ, and IgM in the spleen and kidney post-vaccination were significantly up-regulated compared to the control group, but TNF-α expression showed no significant changes. The safety and efficacy of LMBV-2007136 at passages P8, P13, and P18 were futher assessed, and no death of largemouth bass was observed within 21 days post-immunization and RPS of three vaccination groups was 100%, suggesting that the safety and efficacy of the attenuated strain at different passages was stable. Furthermore, in the virulence reversion test, the attenuated strain was propagated through 5 times in largemouth bass by intraperitoneal injection and no abnormality and mortality were observed, further proving the attenuated vaccine candidate LMBV-2007136 was safe. These results proved that LMBV-2007136 could be a promising candidate for a live vaccine to protect largemouth bass from LMBV disease.

Just Published
Relevant
ANAX4 is a downstream molecule of LGP2 and promotes GCRV proliferation

This study explored the key molecules and signal pathways in the pathogenesis of grass carp reovirus (GCRV). Using immunoprecipitation mass spectrometry and Co-IP validation, the protein CiANXA4 was identified which interacts indirectly with CiLGP2. CiANXA4 encodes 321 amino acids, including 4 ANX domains. To explore the role of CiANXA4 in the anti-GCRV immune response, we used overexpression and siRNA knockdown in cells. The results showed that overexpression of the CiANXA4 gene significantly increased the mRNA content of vp2 and vp7 in GCRV-infected cells, and the virus titer greatly increased. Knockdown of CiANXA4 significantly inhibited the mRNA levels of vp2 and vp7, and the protein levels of viral protein VP7 also significantly decreased. This suggests that CiANXA4 promotes viral proliferation. Further, we demonstrate that the ANX3 and ANX4 domains are key domains that limit CiANXA4 function by constructing domain-deletion mutants. Finally, we investigated the relationship between CiLGP2 and CiANXA4. RT-PCR and Western blot results showed that CiLGP2 mRNA and protein expression levels were not affected by CiANXA4 overexpression. In contrast, overexpression of CiLGP2 resulted in significant reductions in CiANXA4 mRNA and protein levels. This suggests that the function of CiANXA4 is restricted by CiLGP2, and CiANXA4 is a downstream molecule of CiLGP2. These results reveal that CiANXA4 plays a critical role in the anti-GCRV innate immune response of grass carp, and provides new targets and strategies to develop antiviral drugs and improve disease resistance in grass carp.

Just Published
Relevant
Lactobacillus casei displaying MCP2α and FlaC delivered by PLA microspheres effectively enhances the immune protection of largemouth bass (Micropterus salmoides) against LMBV infection

Largemouth bass ranavirus (LMBV) seriously affects the development of largemouth bass (Micropterus salmoides) industry and causes huge economic losses. Oral vaccine can be a promising method for viral disease precaution. In this study, MCP2α was identified as a valuable epitope region superior to MCP and MCP2 of LMBV by neutralizing antibody experiments. Then, recombinant Lactobacillus casei expressing the fusion protein MCP2αC (MCP2α as antigen, C represents flagellin C from Aeromonas hydrophila as adjuvant) on surface was constructed and verified. Further, PLA microsphere vaccine loading recombinant MCP2αC L. casei was prepared. The PLA microspheres vaccine were observed by scanning electron microscopy and showed a smooth, regular spherical surface with a particle size distribution between 100 and 200 μm. Furthermore, we evaluated the tolerance of PLA-MCP2αC vaccine in simulated gastric fluid and simulated intestinal fluid, and the results showed that PLA-MCP2αC can effectively resist the gastrointestinal environment. Moreover, the protective effect of PLA-MCP2αC against LMBV was evaluated after oral immunization and LMBV challenge. The results showed that PLA-MCP2αC effectively up-regulated the activity of serum biochemical enzymes (T-SOD, T-AOC, LZM, complement C3) and induced the mRNA expression of representative immune genes (IL-1β, TNF-α, IFN-γ, MHC-IIα, Mx, IgM) in spleen and head kidney tissues. The survival rate of largemouth bass vaccinated with PLA-MCP2αC increased from 24 % to 68 %. Meanwhile, PLA-MCP2αC inhibited the LMBV burden in spleen, head kidney and liver tissues and attenuated tissue damage in spleen. These results suggested that PLA-MCP2αC can be used as a candidate oral vaccine against LMBV infection in aquaculture.

Just Published
Relevant
Transcriptomic and functional analysis of the antiviral response of mussels after a poly I:C stimulation

The study of mussels (Mytilus galloprovincialis) has grown in importance in recent years due to their high economic value and resistance to pathogens. Because of the biological characteristics revealed by mussel genome sequencing, this species is a valuable research model. The high genomic variability and diversity, particularly in immune genes, may be responsible for their resistance to pathogens found in seawater and continuously filtered and internalized by them. These facts, combined with the lack of proven mussel susceptibility to viruses in comparison to other bivalves such as oysters, result in a lack of studies on mussel antiviral response. We used RNA-seq to examine the genomic response of mussel hemocytes after they were exposed to poly I:C, simulating immune cell contact with viral dsRNA. Apoptosis and the molecular axis IRFs/STING-IFI44/IRGC1 were identified as the two main pathways in charge of the response but we also found a modulation of lncRNAs. Finally, in order to obtain new information about the response of mussels to putative natural challenges, we used VHSV virus (Viral Hemorrhagic Septicemia Virus) to run some functional analysis and confirm poly I:C's activity as an immunomodulator in a VHSV waterborne stimulation. Both, poly I:C as well as an injury stimulus (filtered sea water injection) accelerated the viral clearance by hemocytes and altered the expression of several immune genes, including IL-17, IRF1 and viperin.

Open Access Just Published
Relevant
Aeromonas salmonicida AI-1 and AI-2 quorum sensing pathways are differentially regulated by rainbow trout mucins and during in vivo colonization

Aeromonas salmonicida is an opportunistic pathogen with relevance for aquaculture. Fish epithelia are covered by a mucus layer, composed mainly by highly glycosylated mucins, which are the first point of contact between fish and pathogens. Quorum sensing (QS), a bacterial communication mechanism through secreted autoinducer signals that governs gene expression, influences bacterial growth and virulence. The main A. salmonicida autoinducers are mediated by the luxS and asaI genes, corresponding to inter- and intraspecies communication, respectively. The aim of this study was to determine the effect of the mucins that pathogens encounter during colonization of the gill and skin on A. salmonicida QS. We found that expression of A. salmonicida asaI, but not luxS, was increased after culture at 20 °C compared to 10 °C. Rainbow trout gill and skin mucins up-regulated asaI expression 2-fold but down-regulated luxS 10-fold. The downregulation of luxS was reflected by a reduction in autoinducer-2 secretion. Mucins isolated from skin had a stronger inhibitory effect than mucins isolated from gills on both luxS expression and A1-2 secretion, consistent with a higher relative abundance of N-Acetylneuraminic acid on skin mucins than on gill mucins. Reduction of AI-2 production by mucins or luxS-deletion lead to a reduced A. salmonicida auto-aggregation. Furthermore, after colonization of the gill, luxS was down regulated whereas asaI expression was upregulated. Both in vivo and in vitro, the expression of luxS and asaI were thus differentially regulated, frequently in an inverse manner. The strong AI-2 inhibiting effect of the skin mucins is likely part of the mucin-based defense against pathogens.

Just Published
Relevant
Molecular features, antiviral activity, and immunological expression assessment of interferon-related developmental regulator 1 (IFRD1) in red-spotted grouper (Epinephelus akaara)

Interferon-related developmental regulator 1 (IFRD1) is a viral responsive gene associated with interferon-gamma. Herein, we identified the IFRD1 gene (EaIFRD1) from red-spotted grouper (Epinephelus akaara), evaluated its transcriptional responses, and investigated its functional features using various biological assays. EaIFRD1 encodes a protein comprising 428 amino acids with a molecular mass of 48.22 kDa. It features a substantial domain belonging to the interferon-related developmental regulator superfamily. Spatial mRNA expression of EaIFRD1 demonstrated the highest expression levels in the brain and the lowest in the skin. Furthermore, EaIFRD1 mRNA expression in grouper tissues exhibited significant modulation in response to immune stimulants, including poly (I:C), LPS, and nervous necrosis virus (NNV) infection. We analyzed downstream gene regulation by examining type Ⅰ interferon pathway genes following EaIFRD1 overexpression. The results demonstrated a significant upregulation in cells overexpressing EaIFRD1 compared to the control after infection with viral hemorrhagic septicemia virus (VHSV). A subcellular localization assay confirmed the nuclear location of the EaIFRD1 protein, consistent with its role as a transcriptional coactivator. Cells overexpressing EaIFRD1 exhibited increased migratory activity, enhancing wound-healing capabilities compared to the control. Additionally, under H2O2 exposure, EaIFRD1 overexpression protected cells against oxidative stress. Overexpression of EaIFRD1 also reduced poly (I:C)-mediated NO production in RAW267.4 macrophage cells. In FHM cells, EaIFRD1 overexpression significantly reduced VHSV virion replication. Collectively, these findings suggest that EaIFRD1 plays a crucial role in the antiviral immune response and immunological regulation in E. akaara.

Just Published
Relevant
The Sec pathway gene yidC regulates the virulence of mesophilic Aeromonassalmonicida

Aeromonas salmonicida is a common pathogenic bacterial species found in both freshwater and marine fish, leading to significant economic losses in the aquaculture industry. YidC is an accessory to SecYEG and is essential for the SecYEG transporter to insert into the bacterial membrane. However, the roles of the yidC gene on the host immune response remain unclear. Here, we compared the pathogenicity of yidC gene-deleted (ΔyidC) strain and wild-type (SRW-OG1) strain of mesophilic A. salmonicida to Orange-spotted grouper (Epinephelus coioides), and explored the impacts of yidC gene on the immune response of E. coioides to mesophilic A. salmonicida infection by using Red/ET recombineering. In this study, the E. coioides in the Secondary infected group had a 53.9 % higher survival rate than those in the Primary infected group. In addition, the adhesion ability of ΔyidC strain decreased by about 83.36 % compared with that of the wild-type (SRW-OG1) strain. Further comparison of the biological phenotype of SRW-OG1 and ΔyidC revealed that this yidC gene could regulate the expression of genes related to iron metabolism and have no effect on bacterial growth under the limited iron concentration. In the low concentration of Fe3+ and Fe2+ environment, SRW-OG1 can obtain iron ions by regulating yidC. Based on the above results, yidC gene contributed to the pathogenicity of mesophilic A. salmonicida to E. coioides, deletion of yidC gene promoted the inflammation and immune response of E. coioides to mesophilic A. salmonicida infection.

Just Published
Relevant