Sort by
Pre-Clinical Development of an Adenovirus Vector Based RSV and Shingles Vaccine Candidate.

Respiratory syncytial virus (RSV) infection and shingles are two viral diseases that affect older adults, and a combined vaccine to protect against both could be beneficial. RSV infection causes hospitalisations and significant morbidity in both children and adults and can be fatal in the elderly. The RSV fusion (F) envelope glycoprotein induces a strong RSV-neutralising antibody response and is the target of protective immunity in the first RSV vaccine for older adults, recently approved by the FDA. An initial childhood infection with the varicella zoster virus (VZV) results in chickenpox disease, but reactivation in older adults can cause shingles. This reactivation in sensory and autonomic neurons is characterized by a skin-blistering rash that can be accompanied by prolonged pain. The approved protein-in-adjuvant shingles vaccine induces VZV glycoprotein E (gE)-fspecific antibody and CD4+ T cell responses and is highly effective. Here we report the evaluation of RSV/shingles combination vaccine candidates based on non-replicating chimpanzee adenovirus (ChAd) vectors. We confirmed the cellular and humoral immunogenicity of the vaccine vectors in mice using T cell and antibody assays. We also carried out an RSV challenge study in cotton rats which demonstrated protective efficacy following a homologous prime-boost regimen with our preferred vaccine candidate.

Open Access
Relevant
HBV001: Phase I study evaluating the safety and immunogenicity of the therapeutic vaccine ChAdOx1-HBV

Background & AimsMillions of people worldwide are infected chronically with HBV, which results in significant morbidity and mortality. Therapeutic vaccination is a strategy that aims to induce functional cure by restoring cellular immunity to HBV. Previously we have shown the candidate HBV immunotherapeutic vaccine ChAdOx1-HBV, encoding all major HBV antigens and a genetic adjuvant (shark invariant chain), is highly immunogenic in mice. MethodsHere we report the results of HBV001, a first-in-human, phase I, non-randomised, dose-escalation trial of ChAdOx1-HBV assessed in healthy volunteers and patients with chronic HBV (CHB). ResultsVaccination with a single dose of ChAdOx1-HBV was safe and well tolerated in both healthy and CHB cohorts. Vaccination induced high magnitude HBV-specific T cell responses against all major HBV antigens (core, polymerase, and surface) in healthy volunteers. Responses were detected but lower in patients with CHB. T cells generated by vaccination were cross-reactive between HBV C and D genotypes. ConclusionsChAdOx1-HBV is safe and immunogenic in healthy volunteers and patients with CHB. In further studies, ChAdOx1-HBV will be used in combination with other therapeutic strategies with an aim to overcome the attenuated immunogenicity in patients with CHB. Impact and implicationsTherapeutic vaccine ChAdOx1-HBV, a novel treatment for chronic hepatitis B infection (CHB), has been shown to be immunogenic in preclinical studies. In HBV001, a first-in-human phase I study, we show vaccination with ChAdOx1-HBV is safe and generates high magnitude T cell responses in healthy volunteers and lower levels of responses in patients with CHB. This is an important first step in the development of ChAdOx1-HBV as part of a wider therapeutic strategy to induce hepatitis B functional cure, and is of great interest to patients CHB and clinicians treating the condition. Clinical Trials RegistrationThis study is registered at ClinicalTrials.gov (NCT04297917).

Open Access
Relevant
Preclinical immunogenicity of an adenovirus-vectored vaccine for herpes zoster

ABSTRACT Herpes zoster (HZ) results from waning immunity following childhood infection with varicella zoster virus (VZV) but is preventable by vaccination with recombinant HZ vaccine or live HZ vaccine (two doses or one dose, respectively). Vaccine efficacy declines with age, live HZ vaccine is contraindicated in immunosuppressed individuals, and severe local reactogenicity of recombinant HZ vaccine is seen in up to 20% of older adults, indicating a potential need for new vaccines. Nonreplicating chimpanzee adenovirus (ChAd) vectors combine potent immunogenicity with well-established reactogenicity and safety profiles. We evaluated the cellular and humoral immunogenicity of ChAdOx1 encoding VZV envelope glycoprotein E (ChAdOx1-VZVgE) in mice using IFN-γ ELISpot, flow cytometry with intracellular cytokine staining, and ELISA. In outbred CD-1 mice, one dose of ChAdOx1-VZVgE (1 × 107 infectious units) elicited higher gE-specific T cell responses than two doses of recombinant HZ vaccine (1 µg) or one dose of live HZ vaccine (1.3 × 103 plaque-forming units). Antibody responses were higher with two doses of recombinant HZ vaccine than with two doses of ChAdOx1-VZVgE or one dose of live HZ vaccine. ChAdOx1-VZVgE boosted T cell and antibody responses following live HZ vaccine priming. The frequencies of polyfunctional CD4+ and CD8+ T cells expressing more than one cytokine (IFN-γ, TNF-α and IL-2) were higher with ChAdOx1-VZVgE than with the conventional vaccines. Results were similar in young and aged BALB/c mice. These findings support the clinical development of ChAdOx1-VZVgE for prevention of HZ in adults aged 50 years or over, including those who have already received conventional vaccines.

Open Access
Relevant
Intravenous administration of viral vectors expressing prostate cancer antigens enhances the magnitude and functionality of CD8+ T cell responses

BackgroundThe use of immunotherapeutic vaccination in prostate cancer is a promising approach that likely requires the induction of functional, cytotoxic T cells . The experimental approach described here uses a well-studied adenovirus-poxvirus heterologous prime-boost regimen, in which the vectors encode a combination of prostate cancer antigens, with the booster dose delivered by either the intravenous or intramuscular (IM) route. This prime-boost regimen was investigated for antigen-specific CD8+ T cell induction.MethodsThe coding sequences for four antigens expressed in prostate cancer, 5T4, PSA, PAP, and STEAP1, were inserted into replication-incompetent chimpanzee adenovirus Oxford 1 (ChAdOx1) and into replication-deficient modified vaccinia Ankara (MVA). In four strains of mice, ChAdOx1 prime was delivered intramuscularly, with an MVA boost delivered by either IM or intravenous routes. Immune responses were measured in splenocytes using ELISpot, multiparameter flow cytometry, and a targeted in vivo killing assay.ResultsThe prime-boost regimen was highly immunogenic, with intravenous administration of the boost resulting in a sixfold increase in the magnitude of antigen-specific T cells induced and increased in vivo killing relative to the intramuscular boosting route. Prostate-specific antigen (PSA)-specific responses were dominant in all mouse strains studied (C57BL/6, BALBc, CD-1 and HLA-A2 transgenic).ConclusionThis quadrivalent immunotherapeutic approach using four antigens expressed in prostate cancer induced high magnitude, functional CD8+ T cells in murine models. The data suggest that comparing the intravenous versus intramuscular boosting routes is worthy of investigation in humans.

Open Access
Relevant