Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Epoxy Resin-Based Materials Containing Natural Additives of Plant Origin Dedicated to Rail Transport.

The presented study is focused on the modification of commercially available epoxy resin with flame retardants by means of using natural substances, including quercetin hydrate and potato starch. The main aim was to obtain environmentally friendly material dedicated to rail transport that is resistant to the aging process during exploitation but also more prone to biodegradation in environmental conditions after usage. Starch is a natural biopolymer that can be applied as a pro-ecological filler, which may contribute to degradation in environmental conditions, while quercetin hydrate is able to prevent a composite from premature degradation during exploitation. To determine the aging resistance of the prepared materials, the measurements of hardness, color, mechanical properties and surface free energy were performed before and after solar aging. To assess the mechanical properties of the composite material, one-directional tensile tests were performed for three directions (0, 90, 45 degrees referred to the plate edges). Moreover, the FT-IR spectra of pristine and aged materials were obtained to observe the changes in chemical structure. Furthermore, thermogravimetric analysis was conducted to achieve information about the impact of natural substances on the thermal resistance of the achieved composites.

Read full abstract
Open Access
Accelerated Aging of Epoxy Biocomposites Filled with Cellulose

The presented research concerns the mechanochemical modification of a snap-cure type of epoxy resin, A.S. SET 1010, with the addition of different amounts of cellulose (0, 2, 5, 10, 15 and 20 per 100 resin), for a novel, controlled-degradation material with possible application in the production of passenger seats in rail transport. Composite samples were prepared on a hydraulic press in ac-cordance with the resin manufacturer’s recommendations, in the form of tiles with dimensions of 80 × 80 × 1 mm. The prepared samples were subjected to thermo-oxidative aging and weathering for a period of 336 h. Changes in the color and surface defects in the investigated composites were evaluated using UV-Vis spectrophotometry (Cie-Lab). The degree of degradation by changes in the chemical structure of the samples was analyzed using FTIR/ATR spectroscopy. Differential scan-ning calorimetry (DSC) and thermogravimetric analysis (TGA) tests were performed, and the sur-face energy of the samples was determined by measuring the contact angle of droplets. Tests were performed to determine changes in cellulose-filled epoxy resin composites after thermo-oxidative aging and weathering. It was found out that the addition of cellulose did not inflict sufficient changes to the properties within tested parameters. In the tested case, cellulose acted as a natural active biofiller. Our research is in line with the widespread pursuit of pro-ecological solutions in industry and the creation of materials with a positive impact on the natural environment.

Read full abstract
Open Access
Sperm competition and sexually size dimorphic brains in birds.

Natural selection may favour sexually similar brain size owing to similar selection pressures in males and females, while sexual selection may lead to sexually dimorphic brains. For example, sperm competition involves clear-cut sex differences in behaviour, as males display, mate guard and copulate with females, while females choose among males, and solicit or reject copulations. These behaviours may require fundamentally different neural government in the two sexes leading to sex-dependent brain evolution. Using two phylogenetic approaches in a comparative study, we tested for roles of both natural and sexual-selection pressures on brain size evolution of birds. In accordance with the natural-selection theory, relative brain size of males coevolved with that of females, which may be the result of adaptation to similar environmental constraints such as feeding innovation. However, the mode of brain size evolution differed between the sexes, and factors associated with sperm competition as reflected by extra-pair paternity may give rise to sexually size dimorphic brains. Specifically, species in which females have larger brains than males were found to have a higher degree of extra-pair paternity independently of potentially confounding factors, whereas species in which males have relatively larger brains than females appeared to have lower rates of extra-pair paternity. Hence, the evolution of sperm competition may select for complex behaviours together with the associated neural substrates in the sex that has a higher potential to control extra-pair copulations at the observed levels. Brain function may thus be affected differently in males and females by sexual selection.

Read full abstract
Open Access