Sort by
The use of hyperbaric oxygen for avascular necrosis of the femoral head and femoral condyle: a single centre's experience over 30 years.

Avascular necrosis (AVN) is a rare progressive degenerative disease leading to bone and joint destruction. Patients often require surgical intervention. Femoral AVN is the most common anatomical location. Hyperbaric oxygen treatment (HBOT) has been shown to be effective in AVN. We present data collected from one centre over a 30-year period and compare the results with other published data. A retrospective chart review of all patients receiving HBOT for AVN at Fremantle and Fiona Stanley Hospitals since 1989 was performed. The primary outcome was radiological appearance using the Steinberg score, with secondary outcomes being subjective improvement, the need for joint replacement surgery and rates of complications. Twenty-one joints in 14 patients (14 femoral heads and seven femoral condyles) were treated with HBOT since 1989. Two patients were excluded. Within the femoral head group, nine of the 14 joints (64%) had stable or improved magnetic resonance imaging (MRI) scans post treatment and at six months (minimum); 10 joints (71%) had good outcomes subjectively, three joints required surgical intervention, and three patients developed mild aural barotrauma. Within the femoral condyle group, all five joints had stable or improved post-treatment MRI scans (four had visible improvement in oedema and/or chondral stability), four joints reported good outcomes subjectively, none of the patients required surgical intervention (follow-up > six months). This single centre retrospective study observed prevention of disease progression in femoral AVN with the use of HBOT, comparable to other published studies. This adds to the body of evidence that HBOT may have a significant role in the treatment of femoral AVN.

Relevant
Survey comparing the treatment of central retinal artery occlusion with hyperbaric oxygen in Australia and New Zealand with the recommended guidelines as outlined by the Undersea and Hyperbaric Medical Society.

Central retinal artery occlusion (CRAO) presents suddenly causing painless loss of vision that is often significant. Meaningful improvement in vision occurs in only 8% of patients with spontaneous reperfusion. Hyperbaric oxygen treatment (HBOT) is considered to be of benefit if commenced before retinal infarction occurs. The Undersea and Hyperbaric Medical Society (UHMS) guidelines on the management of CRAO were last amended in 2019. This survey questioned Australian and New Zealand (ANZ) hyperbaric medicine units (HMUs) about the incidence of CRAO cases referred and compared their subsequent management against the UHMS guidelines. An anonymous survey via SurveyMonkey® was sent to all 12 ANZ HMUs that treat emergency indications, allowing for multiple choice and free text answers regarding their management of CRAO. One-hundred and forty-six cases of CRAO were treated in ANZ HMUs over the last five years. Most (101/146) cases (69%) were initially treated at a pressure of 284 kPa. This was the area of greatest difference noted in CRAO management between the UHMS guidelines and ANZ practice. Few ANZ HMUs strictly followed the UHMS guidelines. We suggest a more simplified management protocol as used by the majority of ANZ HMUs.

Relevant
Clinical utility of dipstick urinalysis in assessing fitness to dive in military divers, submariners, and hyperbaric personnel.

Routine dipstick urinalysis is part of many dive medical assessment protocols. However, this has a significant chance of producing false-positive or false-negative results in asymptomatic and healthy individuals. Studies evaluating the value of urinalysis in dive medical assessments are limited. All results from urinalysis as part of dive medical assessments of divers, submarines, and hyperbaric personnel of the Royal Netherlands Navy from 2013 to 2023 were included in this study. Additionally, any information regarding additional testing, referral, or test results concerning the aforementioned was collected. There were 5,899 assessments, resulting in 46 (0.8%) positive dipstick urinalysis results, predominantly microscopic haematuria. Females were significantly overrepresented, and revisions resulted in significantly more positive test results than initial assessments. Lastly, almost half of the cases were deemed fit to dive, while the other half were regarded as temporarily unfit. These cases required additional testing, and a urologist was consulted three times. To our knowledge, this is the most extensive study evaluating urinalysis in dive medical assessments. In our military population, the incidence of positive test results is very low, and there have not been clinically relevant results over a period of 10 years. Therefore, routinely assessing urine in asymptomatic healthy military candidates is not cost-effective or efficacious. The authors advise taking a thorough history for fitness to dive assessments and only analysing urine when a clinical indication is present.

Relevant
The role of routine cardiac investigations before hyperbaric oxygen treatment.

Cardiac complications are a rare but potentially serious consequence of hyperbaric oxygen treatment (HBOT), resulting from increased blood pressure and decreased heart rate and cardiac output associated with treatment. These physiologic changes are generally well-tolerated by patients without preexisting cardiac conditions, although those with known or undetected cardiac disease may be more vulnerable to treatment complications. Currently, there are no universally accepted guidelines for pre-HBOT cardiac screening to identify these patients at heightened risk, leading to variability in practice patterns. In the absence of HBOT-specific evidence, screening protocols might be adapted from the diving medicine community; however, given the important differences in physiological stressors, these may not be entirely applicable to patients undergoing HBOT. Traditional cardiac investigations such as electro- and echo-cardiograms are limited in their ability to detect relevant risk modifying states in the pre-HBOT patient, stymieing their cost-effectiveness as routine tests. In the absence of strong evidence to support routine cardiac investigation, we argue that a comprehensive history and physical exam - tailored to identify high-risk patients based on clinical parameters - may serve as a more practical screening tool. While certain unique patient groups such as those undergoing dialysis or with implanted cardiac devices may warrant specialised assessment, thorough evaluation may be sufficient to identify many patients unlikely to benefit from cardiac investigation in the pre-HBOT setting. A clinical decision-making tool based on suggested low-risk and high-risk features is offered to guide the use of targeted cardiac investigation prior to HBOT.

Relevant
Effects of CO₂ on the occurrence of decompression sickness: review of the literature.

Inhalation of high concentrations of carbon dioxide (CO₂) at atmospheric pressure can be toxic with dose-dependent effects on the cardiorespiratory system or the central nervous system. Exposure to both hyperbaric and hypobaric environments can result in decompression sickness (DCS). The effects of CO₂ on DCS are not well documented with conflicting results. The objective was to review the literature to clarify the effects of CO₂ inhalation on DCS in the context of hypobaric or hyperbaric exposure. The systematic review included experimental animal and human studies in hyper- and hypobaric conditions evaluating the effects of CO₂ on bubble formation, denitrogenation or the occurrence of DCS. The search was based on MEDLINE and PubMed articles with no language or date restrictions and also included articles from the underwater and aviation medicine literature. Out of 43 articles, only 11 articles were retained and classified according to the criteria of hypo- or hyperbaric exposure, taking into account the duration of CO₂ inhalation in relation to exposure and distinguishing experimental work from studies conducted in humans. Before or during a stay in hypobaric conditions, exposure to high concentrations of CO₂ favors bubble formation and the occurrence of DCS. In hyperbaric conditions, high CO₂ concentrations increase the occurrence of DCS when exposure occurs during the bottom phase at maximum pressure, whereas beneficial effects are observed when exposure occurs during decompression. These opposite effects depending on the timing of exposure could be related to 1) the physical properties of CO₂, a highly diffusible gas that can influence bubble formation, 2) vasomotor effects (vasodilation), and 3) anti-inflammatory effects (kinase-nuclear factor and heme oxygenase-1 pathways). The use of O₂-CO₂ breathing mixtures on the surface after diving may be an avenue worth exploring to prevent DCS.

Relevant
Drinker driver flyer diver.

Blood alcohol concentrations above defined levels are detrimental to cognitive performance. Empirical and published evidence suggest that nitrogen narcosis is analogous to alcohol intoxication with both impairing prefrontal cortex function. Nitrogen narcosis is also known to have been a factor in fatal accidents. To examine the effects of nitrogen narcosis, a recent publication used the Iowa Gambling Task tool, to simulate dynamic real-life risky decision-making behaviour. If the reported outcomes are corroborated in larger rigorously designed studies it is likely to provide further evidence that divers may well experience the negative effects of a 'narcotic agent', even at relatively shallow depths. These deleterious effects may occur regardless of diving experience, aptitude or professional status. In 1872, English law made it an offence to be 'drunk' whilst in charge of horses, carriages, cattle and steam engines. Understanding the danger was easy, establishing who is 'drunk' in the eyes of the court required a legal definition. Driving above a 'legal limit' for alcohol was made illegal in the United Kingdom in 1967. The limit was set at 80 milligrams of alcohol per 100 millilitres of blood. It took just short of one hundred years to get from first introducing a restriction to specific activities, whilst under the influence of alcohol, to having a clear and well-defined enforceable law. The question surely is whether our modern society will tolerate another century before legally defining safe parameters for nitrogen narcosis?

Relevant
Chain of events analysis in diving accidents treated by the Royal Netherlands Navy 1966-2023.

Diving injuries are influenced by a multitude of factors. Literature analysing the full chain of events in diving accidents influencing the occurrence of diving injuries is limited. A previously published 'chain of events analysis' (CEA) framework consists of five steps that may sequentially lead to a diving fatality. This study applied four of these steps to predominately non-lethal diving injuries and aims to determine the causes of diving injuries sustained by divers treated by the Diving Medical Centre of the Royal Netherlands Navy. This retrospective cohort study was performed on diving injuries treated by the Diving Medical Centre between 1966 and 2023. Baseline characteristics and information pertinent to all four steps of the reduced CEA model were extracted and recorded in a database. A total of 288 cases met the inclusion criteria. In 111 cases, all four steps of the CEA model could be applied. Predisposing factors were identified in 261 (90%) cases, triggers in 142 (49%), disabling agents in 195 (68%), and 228 (79%) contained a (possible-) disabling condition. The sustained diving injury led to a fatality in seven cases (2%). The most frequent predisposing factor was health conditions (58%). Exertion (19%), primary diver errors (18%), and faulty equipment (17%) were the most frequently identified triggers. The ascent was the most frequent disabling agent (52%). The CEA framework was found to be a valuable tool in this analysis. Health factors present before diving were identified as the most frequent predisposing factors. Arterial gas emboli were the most lethal injury mechanism.

Relevant
Decompression illness: a comprehensive overview.

Decompression illness is a collective term for two maladies (decompression sickness [DCS] and arterial gas embolism [AGE]) that may arise during or after surfacing from compressed gas diving. Bubbles are the presumed primary vector of injury in both disorders, but the respective sources of bubbles are distinct. In DCS bubbles form primarily from inert gas that becomes dissolved in tissues over the course of a compressed gas dive. During and after ascent ('decompression'), if the pressure of this dissolved gas exceeds ambient pressure small bubbles may form in the extravascular space or in tissue blood vessels, thereafter passing into the venous circulation. In AGE, if compressed gas is trapped in the lungs during ascent, pulmonary barotrauma may introduce bubbles directly into the pulmonary veins and thence to the systemic arterial circulation. In both settings, bubbles may provoke ischaemic, inflammatory, and mechanical injury to tissues and their associated microcirculation. While AGE typically presents with stroke-like manifestations referrable to cerebral involvement, DCS can affect many organs including the brain, spinal cord, inner ear, musculoskeletal tissue, cardiopulmonary system and skin, and potential symptoms are protean in both nature and severity. This comprehensive overview addresses the pathophysiology, manifestations, prevention and treatment of both disorders.

Relevant