The primary objective of this research is to address the research gap in the conservation of heritage buildings in Canada by integrating Historical Building Information Modeling (HBIM) as a tool. The proposed study aims to develop an enhanced framework for the preservation of historical buildings through the utilization of HBIM and 3D-scanning technology. As a result, the research aims to generate a comprehensive database comprising various families of models while also incorporating strategies for point-cloud clustering data. The significance of this research lies in its potential to contribute to the conservation and restoration process of historical buildings. Currently, there are a lack of standardized approaches and comprehensive databases for accurately documenting and reproducing historical buildings. By integrating HBIM and 3D-scanning technology, this research will enable the creation of highly accurate three-dimensional virtual models, consisting of millions of points, which will serve as a comprehensive dataset for the restoration of heritage buildings. The findings of this research will benefit multiple stakeholders. Preservation architects, conservationists, and heritage professionals will gain a valuable tool for documenting and analyzing historical buildings with a high level of precision. The comprehensive database and framework proposed in this study will facilitate decision-making processes during the restoration and preservation phases, ensuring that the original architectural elements and materials are faithfully reproduced. Additionally, policymakers and governmental organizations involved in heritage conservation can use the outcomes of this research to establish standardized guidelines and regulations for the preservation of historical buildings in Canada. Ultimately, the broader community will benefit from the enhanced preservation efforts, as it will contribute to the cultural and historical identity of the nation, fostering a sense of pride and connection to the past.