Sort by
Genetic Tracking of a Rabid Coyote (Canis latrans) Detected beyond a Rabies Enzootic Area in West Virginia, USA.

Wildlife translocation and cross-species transmission can impede control and elimination of emerging zoonotic diseases. Tracking the geographic origin of both host and virus (i.e., translocation versus local infection) may help determine the most effective response when high-risk cases of emerging pathogens are identified in wildlife. In May 2022, a coyote (Canis latrans) infected with the raccoon (Procyon lotor) rabies virus variant (RRV) was collected in Lewis County, West Virginia, USA, an area free from RRV. We applied host population genomics and RRV phylogenetic analyses to determine the most likely geographic origin of the rabid coyote. Coyote genomic analyses included animals from multiple eastern states bordering West Virginia, with the probable origin of the rabid coyote being the county of collection. The RRV phylogenetic analyses included cases detected from West Virginia and neighboring states, with most similar RRV sequences collected in a county 80 km to the northeast, within the oral rabies vaccination zone. The combined results suggest that the coyote was infected in an RRV management area and carried the RRV to Lewis County, a pattern consistent with coyote local movement ecology. Distant cross-species transmission and subsequent host movement presents a low risk for onward transmission in raccoon populations. This information helped with emergency response decision-making, thereby saving time and resources.

Relevant
Invasive wild pig (Sus scrofa) diets on barrier islands in the southeastern United States.

Biological invasions are a leading cause of reductions in global biodiversity. Islands are particularly sensitive to invasions, which often result in cascading impacts throughout island communities. Wild pigs (Sus scrofa) are globally invasive and pose threats to numerous taxa and ecosystems, particularly for islands where they have contributed to declines of many endemic species. However, the impacts of wild pig diet on the flora and fauna remain understudied in many island systems. We used DNA metabarcoding of wild pig fecal samples to quantify the seasonal diet composition of wild pigs on three barrier islands in the southeastern United States. Wild pigs exhibited a diverse diet dominated by plants, but also including marine and terrestrial animals. The diet composition of plants varied seasonally and between islands. Consumption of invertebrates also changed seasonally, with a shift to coastal invertebrates, particularly crabs, in spring and summer. Vertebrates were found in <10% of samples, but spanned broad taxa including amphibians, fish, mammals, and reptiles. Species consumed by wild pigs indicate that wild pigs use a variety of habitats within barrier islands for foraging, including maritime forests, saltmarshes, and beaches. An observed shift to beach foraging during sea turtle nesting season suggests wild pigs have potential to hinder nesting success on islands without established management programs. These findings provide insight into the diverse diets of wild pigs on barrier islands and highlight the need for removal of wild pigs from sensitive island ecosystems because of their potential impacts to native plant and animal communities. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Relevant
Effects of Pregnancy Prevention on Brucella abortus Shedding in American bison (Bison bison).

Products of parturition are the predominant source of Brucella abortus for transmission in bison (Bison bison). Our objective was to assess whether preventing pregnancy in Brucella-seropositive bison reduced B. abortus shedding. Brucella-seropositive and -seronegative bison from Yellowstone National Park, Wyoming, USA were used in a replicated experiment. Each of two replicates (rep1, rep2) included a group of seropositive females treated with a single dose of gonadotropin-releasing hormone-based immunocontraceptive (Treatment rep1, n=15; Treatment rep2, n=20) and an untreated group (Control rep1, n=14; Control rep2, n=16) housed separately. Seronegative sentinel females were placed in each group to monitor horizontal transmission. Seronegative males were co-mingled for breeding each year. Pregnant females were removed from treatment groups in the first year, but not thereafter. Each January-June we monitored for B. abortus shedding events-any parturition associated with culture-positive fluids or tissues. We analyzed probability of shedding events using a negative binomial generalized linear mixed model fit by maximum likelihood using Laplace approximation. Over 5 yr, we observed zero shedding events in Treatment rep1 vs. 12 in Control rep1. All five Control rep1 sentinels but zero (0/5) Treatment rep1 sentinels seroconverted. In the second replicate, Treatment rep2 had two shedding events over 3 yr and Control rep2 had five events over 2 yr. Sentinels in both Control rep2 (3/6) and Treatment rep2 (5/6) seroconverted by trial endpoint. Treatment rep1 showed a reduced shedding probability relative to Control rep1, Treatment rep2, and Control rep2 (log odds value -25.36 vs. -1.71, -1.39, and -0.23, respectively). Fixed effect predictor covariates, year and age, had no explanatory value. These data suggest that successful contraception of brucellosis-seropositive female bison prevents shedding of B. abortus by individual animals. However, contraceptive treatment may or may not sufficiently reduce disease transmission to reduce brucellosis prevalence in an affected herd.

Open Access
Relevant
First Report of Three Bunya-Like Viruses, Apple Luteovirus 1, and Apple Hammerhead Viroid in Apples from Hakkari, Türkiye

Türkiye is a major apple fruit producer in the crossroads of Europe and the Middle East. Several reports have described the presence of multiple viruses affecting apple production in Türkiye, including apple stem grooving virus (ASGV), apple stem pitting virus (ASPV), apple chlorotic leafspot virus (ACLSV), and apple mosaic virus (ApMV) (Kurçman 1977; Fidan 1994; Çağlayan et al. 2003). However, there are no reports of the presence of the recently discovered bunya-like viruses citrus concave gum-associated virus (CCGaV), and apple rubbery wood viruses 1 and 2 (ARWV1 and 2), as well as apple luteovirus 1 (ALV-1), and apple hammerhead viroid (AHVd) in Türkiye, all of which have been previously reported in other apple-producing countries (Wright et al. 2018; Liu et al. 2018; Zhang et al. 2014). Leaves from one Gala, two Granny Smith, and one Golden Delicious apple trees showing mild symptoms of curling, chlorosis, and yellowing were collected from four different orchards in the province of Hakkari, southeast Türkiye during June 2022 and sent to USDA APHIS Plant Germplasm Quarantine Program (under permit) for virus and viroid HTS-based diagnostics. Total RNA was isolated using the RNeasy Plant Mini Kit (Qiagen) following the manufacturer’s guidelines to prepare RNAseq libraries using the TruSeq Stranded Total RNA Library Plant Kit (Illumina, Inc) as described in Malapi-Wight et al. (2021). Libraries were sequenced on the NextSeq500 sequencer (PE 2x75), and approximately 45 million reads were obtained per each sample on average. Bioinformatic analysis was performed as described in Costa et al. (2022) using Phytopipe, where unclassified pathogen-derived reads were de novo assembled and contigs were compared to the NCBI viral nucleotide and protein databases by BlastN and BlastX respectively using a 10-4 e-value cutoff. Nearly complete genome contigs were obtained for ACLSV (OR640150) and ASPV (OR640151) in all four samples and for ASGV (OR640152) in 3 of the 4 samples. The average BlastN identity to sequences in GenBank was 92.3% for ACLSV, ranging from 89-94 %. BlastN identity for ASPV was 86%, ranging from 81-92 % while the ASGV average BlastN identity was 98.2%. Nearly complete genomes with average genome coverage of 92.4% and 95.6% for RNA1 and RNA2 of CCGaV (OR640153 and OR640154), were found in two of the four samples with BlastN identity of 94.7% and 94.8% to GenBank sequences. Additionally, nearly complete genome of the large (L), medium (M), and small (S) segments for ARWV1 were found in two samples with average genome coverage of 99.9%, 99.4%, and 100% respectively and BlastN identity of 98.8%, 95.2%, and 98.4% (OR640155, OR640156, OR640157). ARWV2 contigs were also found in 1 sample where M and S segments had a coverage of 99.8% and BlastN identity of 95.4% (OR640158 and OR640159). The nearly complete genome of ALV-1 was also found in two of four samples with genome coverage of 94.1% and an average BlastN identity of 93.4% (OR640160). AHVd was found in one of the Granny Smith trees with 19,260 mapped reads to the reference GenBank MH049335.1 and identity of 98.3% (OR640149). The HTS findings of CCGaV, ARWV1, ARWV2, and ALV-1, from Türkiye were later confirmed by Sanger sequencing using custom-designed primers targeting the coat protein, the RNA-dependent RNA polymerase, or ~390bp for the AHVd genome (Supplementary Table 1). To further learn about the incidence of these agents, we tested 12 other apple samples from six different neighboring orchards and found them at 18.8% rate for CCGaV, 12.5% for both ARWV1 and ARWV2, 25% for ALV-1, and 37.5% for AHVd respectively. To our knowledge, this is the first report of the apple viruses CCGaV, ARWV1, ARWV2, and ALV-1, and the AHVd viroid in Türkiye. Further studies of the impact of these agents on orchard’s health are necessary, including their prevalence in high apple production regions of Türkiye.

Relevant
Probabilistic genetic identification of wild boar hybridization to support control of invasive wild pigs (<i>Sus scrofa</i>)

AbstractThe rapid expansion of wild pigs (Sus scrofa) throughout the United States has been fueled by unlawful introductions, with invasive populations causing extensive crop losses, damaging native ecosystems, and serving as a reservoir for disease. Multiple states have passed laws prohibiting the possession or transport of wild pigs. However, genetic and phenotypic similarities between domestic pigs and invasive wild pigs—which overwhelmingly represent domestic pig and wild boar hybrids—pose a challenge for the enforcement of such regulations. We sought to exploit wild boar ancestry as a common attribute among the vast majority of invasive wild pigs as a means of genetically differentiating wild pigs from breeds of domestic pig found within the United States. We organized reference high‐density single nucleotide polymorphism genotypes (1039 samples from 33 domestic breeds and 382 samples from 16 wild boar populations) into five genetically cohesive reference groups: mixed‐commercial breeds, Durocs, heritage breeds, primitive breeds, and wild boar. Building upon well‐established genetic clustering approaches, we structured the test statistic to describe the difference in the likelihood of a given genotype's ancestry vectors (sensu genetic clustering analysis) if derived strictly from the four described domestic pig reference groups versus allowing for admixture from the wild boar group. By fitting statistical distributions to test statistics of reference domestic pigs, we characterized the distribution of the null hypothesis that a given genotype descends strictly from domestic pig reference groups. We tested the approach with simulated genotypes and empirical data from an additional 29 breeds of domestic pig represented by 435 unique genotypes; all associated test statistics for simulated and empirical domestic pig challenge sets fell within the distribution of reference domestic pigs. We then evaluated 6566 invasive wild pigs sampled across the contiguous United States, of which 63% exceeded the maximum threshold for domestic pigs and could be statistically classified as possessing wild boar ancestry. This approach provides a scientific foundation to enforce regulations prohibiting the possession of this destructive invasive species. Further, this computationally efficient and generalizable approach could be readily adapted to quantify gene flow among ecological systems of conservation or management concern.

Open Access
Relevant
Comparison of Ketamine-Xylazine, Butorphanol-Azaperone-Medetomidine, and Nalbuphine-Medetomidine-Azaperone for Raccoon (Procyon lotor) Immobilization.

Raccoons (Procyon lotor) are frequently handled using chemical immobilization in North America for management and research. In a controlled environment, we compared three drug combinations: ketamine-xylazine (KX), butorphanol-azaperone-medetomidine (BAM), and nalbuphine-medetomidine-azaperone (NalMed-A) for raccoon immobilization. In crossover comparisons, raccoons received a mean of the following: 8.66 mg/kg ketamine and 1.74 mg/kg xylazine (0.104 mL/kg KX); 0.464 mg/kg butorphanol, 0.155 mg/kg azaperone, and 0.185 mg/kg medetomidine (0.017 mL/kg BAM); and 0.800 mg/kg nalbuphine, 0.200 mg/kg azaperone, and 0.200 mg/kg medetomidine (0.020 mL/kg NalMed-A). Induction time was shortest with KX (mean±SE, 10.0±0.7 min) and longest with NalMed-A (13.0±1.3 min). A sampling procedure was completed on 89% (16/18), 72% (13/18), and 89% (16/18) of the raccoons administered KX, BAM, and NalMed-A, respectively. Reasons for incomplete sampling included inadequate immobilization (one KX and one NalMed-A), responsive behaviors (one each with KX, BAM, NalMed-A), or animal safety (four BAM). Mean recovery time for KX was 32.8±7.1 min without antagonizing and 28.6±5.2 min following delivery of an antagonist. Mean recovery time was 6.2±0.8 min for BAM and 5.1±0.5 min for NalMed-A after antagonizing. Only with KX were raccoons observed to recover without use of an antagonist. Supplemental oxygen was provided to 23% (3/13), 72% (13/18), and 71% (12/17) of raccoons immobilized with KX, BAM, and NalMed-A, respectively. Hypoxemia at <80% oxygen saturation occurred in 0% (0/17), 27% (4/15), and 6% (1/16) of the raccoons administered KX, BAM, and NalMed-A, respectively; all raccoons fully recovered from chemical immobilization. All combinations could be used for raccoon immobilization; however, the need for delivery of supplemental oxygen to a majority of raccoons immobilized with BAM and NalMed-A may limit broader use of these agents for certain field studies involving capture, sample, and release of free-ranging animals from a practical standpoint.

Open Access
Relevant
Assessing the Efficiency of Local Rabies Vaccination Strategies for Raccoons (Procyon lotor) in an Urban Setting.

Raccoon rabies virus (RRV) has been managed using multiple vaccination strategies, including oral rabies vaccination and trap-vaccinate-release (TVR). Identifying a rabies vaccination strategy for an area is a nontrivial task. Vaccination strategies differ in the amount of effort and monetary costs required to achieve a particular level of vaccine seroprevalence (efficiency). Simulating host movement relative to different vaccination strategies in silico can provide a useful tool for exploring the efficiency of different vaccination strategies. We refined a previously developed individual-based model of raccoon movement to evaluate vaccination strategies for urban Hamilton, Ontario, Canada. We combined different oral rabies vaccination baiting (hand baiting, helicopter, and bait stations) with TVR strategies and used GPS data to parameterize and simulate raccoon movement in Hamilton. We developed a total of 560 vaccination strategies, in consultation with the Ontario Ministry of Natural Resources and Forestry, for RRV control in Hamilton. We documented the monetary costs of each vaccination strategy and estimated the population seroprevalence. Intervention costs and seroprevalence estimates were used to calculate the efficiency of each strategy to meet targets set for the purpose of RRV control. Estimated seroprevalence across different strategies varied widely, ranging from less than 5% to more than 70%. Increasing bait densities (distributed using by hand or helicopter) led to negligible increase in seroprevalence. Helicopter baiting was the most efficient and TVR was the least efficient, but helicopter-based strategies led to lower levels of seroprevalence (6-12%) than did TVR-based strategies (17-70%). Our simulations indicated that a mixed strategy including at least some TVR may be the most efficient strategy for a local urban RRV control program when seroprevalence levels >30% may be required. Our simulations provide information regarding the efficiency of different vaccination strategies for raccoon populations, to guide local RRV control in urban settings.

Open Access
Relevant
Oral Rabies Vaccination of Raccoons (Procyon lotor) across a Development Intensity Gradient in Burlington, Vermont, USA, 2015-2017.

Management of the raccoon rabies virus variant in North America is conducted primarily using oral rabies vaccination (ORV). When a sufficient proportion of the population is vaccinated (∼60%), rabies transmission can be eliminated. To date, ORV programs have successfully controlled and eliminated raccoon rabies in rural areas, but there has been less success in urban areas. We studied the proportions of rabies virus neutralizing antibodies (RVNA) in a raccoon (Procyon lotor) population during a 3-yr ORV trial in developed areas of Burlington, Vermont, US. We used a modified N-mixture model to estimate raccoon abundance, RVNA seroprevalence, and capture rates jointly to examine factors that relate to ORV success to better inform management. We found that raccoon abundance was lower in less-developed areas compared to urban centers. Raccoon RVNA seroprevalence decreased as population abundance increased; it increased as the average age of the population increased. Nontarget opossum (Didelphis virginiana) captures correlated with a decrease in raccoon RVNA seroprevalence in low-development areas, suggesting that they may be competing for baits. The target bait density across the entire study area was 150 baits/km2, but a hand baiting strategy was heavily concentrated on roads, resulting in uneven bait densities within sampling sites (0-484 baits/km2). Uneven bait distribution across the study area may explain low RVNA seroprevalence in some locations. Our results suggest that increases in bait density across the study area may improve RVNA seroprevalence and support annual ORV to account for raccoon population turnover.

Open Access
Relevant