Sort by
Ultra scale‐down of protein refold screening in microwells: Challenges, solutions and application

Steps for the refolding of proteins from solubilized inclusion bodies or misfolded product often represent bottlenecks in process development, where optimal conditions are typically derived empirically. To expedite refolding optimization, microwell screening may be used to test multiple conditions in parallel. Fast, accurate, and reproducible assays are required for such screening processes, and the results derived must be representative of the process at full scale. This article demonstrates the use of these microscale techniques to evaluate the effects of a number of additives on the refolding of IGF-1 from denatured inclusion bodies, using an established HPLC assay for this protein. Prior to this, microwell refolding was calibrated for scale-up using hen egg-white lysozyme (HEWL) as an initial model protein, allowing us to implement and compare several assays for protein refolding, including turbidity, enzyme activity, and chromatographic methods, and assess their use for microwell-based experimentation. The impact of various microplate types upon protein binding and loss is also assessed. Solution mixing is a key factor in protein refolding, therefore we have characterized the effects of different methods of mixing in microwells in terms of their impact on protein refolding. Our results confirm the applicability and scalability of microwell screening for the development of protein refolding processes, and its potential for application to new inclusion body-derived protein products.

Relevant
Studies related to antibody fragment (Fab) production in <i>Escherichia coli</i> W3110 fed‐batch fermentation processes using multiparameter flow cytometry

Microbiology is important to industry therefore rapid and statistically representative measurements of cell physiological state, proliferation, and viability are essential if informed decisions about fermentation bioprocess optimization or control are to be made, because process performance will depend largely on the number of metabolically active viable cells. Samples of recombinant Escherichia coli W3110, containing the gene for the D1.3 anti-lysozyme Fab fragment under the control of the lac-based expression system, were taken at various stages from fed-batch fermentation processes and stained with a mixture of bis-(1,3-dibutylbarbituric acid) trimethine oxonol and propidium iodide (PI/BOX). Where appropriate, measurements of dissolved oxygen tension (DOT), OD600nm and Fab concentration were made. Depending on time of induction the maximum amount of Fab accumulating in the supernatant varied quite markedly from 1 to 4 microg ml(-1) as did subsequent cell physiological state with respect to PI/BOX staining with a concomitant drop in maximum biomass concentration. Depending on point of induction a fourfold increase in Fab production could be achieved accompanied by a approximately 50% drop in maximum biomass concentration but with a higher proportion of viable cells as measured by multiparameter flow cytometry.

Open Access
Relevant
Is the axilla a distinct skin phenotype?

The axillary skin is cosmetically important with millions of consumers daily applying antiperspirant/deodorant products. Despite this, we know virtually nothing about axillary skin or how antiperspirant use impacts upon it. To characterize axillary stratum corneum and determine whether this is a unique skin type, we have evaluated a range of skin parameters, comparing these with the volar forearm. Trans‐epidermal water loss and corneosurfametry revealed a reduced barrier function in the axilla. However, application of antiperspirant had no effect upon these barrier properties. High performance thin layer chromatography analysis of stratum corneum lipids demonstrated statistically elevated levels of fatty acids, ceramide and particularly cholesterol in the axilla. This modification of barrier lipid ratios appeared to result in a more ordered lipid lamellae phase behaviour, as determined by attenuated total reflectance Fourier transform infrared spectroscopy, with transition phase changes occurring at higher temperatures. Morphological differences were also seen in the cells of the axillary stratum corneum. Microscopic evaluation of axillary‐cornified envelopes revealed them to be smaller, indicative of a shorter stratum corneum turnover. However, there appeared to be no significant difference corneocyte maturation. ‘Skin dryness’ squamometry measurements indicated that the axillary stratum corneum retained desquamated material on its surface more than on the forearm. This correlated with decreased levels of the desquamatory stratum corneum chymotryptic enzyme in the surface layers of the skin. These results indicate that the axilla has a distinct phenotype. Paper presented at the 22nd IFSCC Congress 2002, Edinburgh, Scotland

Relevant