Sort by
Intranasal Low-Dose Naltrexone Against Opioid Side Effects: A Preclinical Study.

Opioids are broad spectrum analgesics that are an integral part of the therapeutic armamentarium to combat pain in the clinical practice. Unfortunately, together with analgesia, a number of adverse effects can occur such as nausea, vomiting, constipation, gastrointestinal alterations and cognitive impairments. Naltrexone is a competitive antagonist of opioid receptors commonly used to treat opioid addiction; its oral use against agonists side effects is limited by the decrease of opioids-therapeutic efficacy and own adverse effects. The intranasal delivery of naltrexone could offer a quick and effective achievement of CNS based on extracellular mechanisms including perineural and perivascular transport. The aim of the study was to test the efficacy of intranasal low-dose naltrexone in reducing intraperitoneal morphine and oxycodone side effects in rodents. In mice, 1 μg naltrexone intranasally administered 30 min before opioids reduced cognitive impairments and motor alteration induced by 10 mg kg−1 morphine and 60 mg kg−1 oxycodone in the Passive avoidance and Rota rod tests, respectively. Moreover, naltrexone rebalanced opioid-induced reduction of the intestinal transit and latency of feces expulsion as well as food intake inhibition. Importantly, 1 μg naltrexone instillation did not block analgesia as demonstrated by the Hot plate test. In rats, intranasal naltrexone counteracted the opioid-induced pica phenomenon related to emesis and increased water and palatable food intake. The effects were comparable to that achieved by metoclopramide used as reference drug. Treatments did not influence body weight. Lastly, the safety of the intranasal delivery has been checked by hematoxylin–eosin staining that did not show histological alterations of the nasal cavity. In conclusion, intranasal low-dose naltrexone counteracted morphine and oxycodone induced gastrointestinal and CNS side effects without impairing opioid analgesia. It is a candidate to be a valid clinical strategy deserving deep analysis.

Open Access
Relevant
Systematic benefit-risk assessment for buprenorphine implant: a semiquantitative method to support risk management

BackgroundPrior to approval in the European Union, a systematic benefit-risk assessment was required to compare buprenorphine implant to sublingual buprenorphine as part of the license application to the European Medicines Agency.ObjectiveThe Benefit-Risk Action Team framework was used to describe the overall benefit-risk of buprenorphine implant in comparison to sublingual buprenorphine.Study selection/methodsA value tree of key benefits and risks related to the implant formulation of buprenorphine was constructed. Risk differences (RD) or reporting ORs (ROR) and corresponding 95% CIs were calculated for each outcome, along with the number needed to treat and number needed to harm. Swing weighting was assigned to outcomes and the weighted net clinical benefit (wNCB) was calculated.FindingsKey benefits assessed: reduced risk of illicit opioid use (RD=0.09, 95% CI 0.01 to 0.17), reduced risk of misuse and diversion (ROR=0.13, 95% CI 0.02 to 0.94), improved compliance and convenience (RD=0.20) and quality of life measures (RD=0.03). Key risks assessed: clinically significant implant breakage (RD=0.01, 95% CI 0.00 to 0.01), migration/missing implant (RD=0.01, 95% CI 0.00 to 0.02), infection at insertion/removal site (RD=0.08, 95% CI 0.03 to 0.12) and implant-related allergic reaction (RD=0.07, 95% CI 0.03 to 0.11). The wNCB for buprenorphine implant was 4.96, which suggests a favourable benefit-risk profile.ConclusionsThe benefit-risk profile of buprenorphine implant is considered favourable in comparison to sublingual buprenorphine, based on this semiquantitative analysis using available data. Further data from real-world use on benefits and risks should be used for ongoing monitoring of the benefit-risk profile of buprenorphine implants in the postmarketing setting.

Open Access
Relevant
Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material

Prosthetic joint infections (PJIs) are becoming a growing public health concern in developed countries as more people undergo arthroplasty for bone fixation or joint replacement. Because a wide range of bacterial strains responsible for PJIs can produce biofilms on prosthetic implants and because the biofilm structure confers elevated bacterial resistance to antibiotic therapy, new drugs and therapies are needed to improve the clinical outcome of treatment of PJIs. Antimicrobial photodynamic therapy (APDT), a non-antibiotic broad-spectrum antimicrobial treatment, is also active against multidrug-resistant micro-organisms such as meticillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. APDT uses a photosensitiser that targets bacterial cells following exposure to visible light. APDT with RLP068/Cl, a novel photosensitiser, was studied by confocal laser scanning microscopy (CLSM) to evaluate the disruption of MRSA and P. aeruginosa biofilms on prosthetic material. Quantitative CLSM studies showed a reduction in biofilm biomass (biofilm disruption) and a decrease in viable cell numbers, as determined by standard plate counting, in the S. aureus and P. aeruginosa biofilms exposed to APDT with the photosensitiser RLP068/Cl. APDT with RLP068/Cl may be a useful approach to the treatment of PJI-associated biofilms.

Relevant
Photodynamic topical antimicrobial therapy for infected foot ulcers in patients with diabetes: a randomized, double-blind, placebo-controlled study—the D.A.N.T.E (Diabetic ulcer Antimicrobial New Topical treatment Evaluation) study

This study was designed to assess the antimicrobial effect and tolerability of a single dose of a photo-activated gel containing RLP068 in the treatment for infected foot ulcers in subjects with diabetes. A randomized, double-blind, parallel series, placebo-controlled phase IIa trial was performed with three concentrations of RLP068 (0.10, 0.30, and 0.50%), measuring total and pathogen microbial load on Day 1 (before and 1h after topical gel application and photoactivation with 689nm red light), on Days 3, 8, and 15, as add-on to systemic treatment with amoxicillin and clavulanic acid. Blood samples were also drawn 1, 2, and 48h after administration for the assessment of systemic drug absorption. The trial was performed on 62 patients aged ≥18years, with type 1 or type 2 diabetes and infected foot ulcer, with an area of 2-15cm(2) and a maximum diameter ≤4.6cm. A dose-dependent reduction in total microbial load was observed (-1.92±1.21, -2.94±1.60, and -3.00±1.82 LogCFU/ml for 0.10, 0.30, and 0.50% RPL068 vs. -1.00±1.02 LogCFU/ml with placebo) immediately after illumination, with a progressive fading of the effect during follow-up. No safety issues emerged from the analysis of adverse events. Systemic absorption of RLP068 was negligible. Photodynamic antimicrobial treatment with RLP068 of infected diabetic foot ulcers is well tolerated and produces a significant reduction in germ load. Further clinical trials are needed to verify the efficacy of this approach as add-on to systemic antibiotic treatment.

Relevant
A technique of mRNA extraction and labeling from circulating lymphocytes of children treated with growth hormone replacement therapy for microarray analysis

GH replacement therapy exhibits a wide spectrum of response in terms of growth. Nevertheless, standardized doses are still given in clinical practice. In order to optimize the therapy, it is necessary to identify its markers of responsiveness. Given the presence of GH receptors in the circulating lymphocytes, accessible by means of a simple blood withdrawal, blood becomes the tissue of choice as a source of RNA for in vivo gene expression analysis. Hence, the purpose of the present paper is to develop a method of preparation of RNA from lymphocytes suitable for microarray analysis, focusing on the reduction of the blood volume withdrawal in order to perform the analysis on pediatric subjects. After lymphocyte isolation and total RNA extraction from 6 ml of blood, we carried out an amplification procedure preserving the relative abundance of each transcript. Thereafter, we hybridized the labeled amplified RNA on an oligo chip (Human 30K A, MWGBiotech), but the unsuccessful detection of a good signal to noise ratio indicates that labeled RNA is still insufficient. Therefore, we suggest performing pools of total RNA from different subjects with similar responsiveness to the therapy. It can be speculated that, upon comparison of the obtained data with those derived from pools of controls properly responding to the therapy, specific hallmarks of the condition of low responsiveness, devoid of inter-individual variability, will be evidenced.

Relevant