Sort by
Structural Colors Derived from the Combination of Core–Shell Particles with Cellulose

Combining cellulose‐based components with functional materials is highly interesting in various research fields due to the improved strength and stiffness of the materials combined with their low weight. Herein, the mechanical properties of opal films are improved by incorporating cellulose fibers and microcrystalline cellulose. This is evidenced by the increase in tensile strength of 162.8% after adding 10 wt% of microcrystalline cellulose. For this purpose, core–shell particles with a rigid, crosslinked polystyrene core and a soft shell of poly(ethyl acrylate) and poly(ethyl acrylate‐co‐hydroxyethyl methacrylate) are synthesized via starved‐feed emulsion polymerization. The synthesized particles’ well‐defined shape, morphology, and thermal properties are analyzed using transmission electron microscopy, scanning electron microscopy, and differential scanning calorimetry measurements. Free‐standing mechanochromic opal films with incorporated cellulose and structural colors are obtained after processing the core–shell particles with cellulose via extrusion and the melt‐shear organization technique. The homogeneous distribution of the cellulose within the composite material is investigated using fluorescent‐labeled cellulose. The opal film's angle‐dependent structural color is demonstrated using reflection spectroscopy.

Open Access
Relevant
Chiral Emission from Optical Metasurfaces and Metacavities

Chiral emission exhibiting a large degree of circular polarization (DCP) is important in diverse applications ranging from displays and optical storage to optical communication, bioimaging, and medical diagnostics. Although chiral luminescent materials can generate chiral emissions directly, they frequently suffer from either low DCP or low quantum efficiencies. Achieving high DCP and quantum efficiencies simultaneously remains extremely challenging. This review introduces an alternative approach to chiral emission. Chiral emission with large DCP can be readily achieved by combining conventional achiral emitters with chiral metasurfaces. Particularly, this article focuses on recent experimental and theoretical studies on perovskite metasurfaces and metacavities that employ achiral perovskite materials. First, chiral photoluminescence from extrinsic and intrinsic perovskite metasurfaces is explained together with theoretical discussions on metasurface design based on reciprocity and critical coupling. Chiral photoluminescence from other achiral materials is also explained. Subsequently, chiral electroluminescence from perovskite metacavities and other achiral materials is discussed. Finally, it is concluded with future perspectives. This review provides physical insights into how ideal chiral emission can be realized by optimizing the design of metasurfaces and metacavities. Compact chiral light sources with both near‐unity DCP and strong emission intensities can have far‐reaching consequences in a wide range of future applications.

Open Access
Relevant