Abstract We build a Shannon orbit equivalence between the universal odometer and a variety of rank-one systems. This is done in a unified manner using what we call flexible classes of rank-one transformations. Our main result is that every flexible class contains an element which is Shannon orbit equivalent to the universal odometer. Since a typical example of flexible class is $\{T\}$ when T is an odometer, our work generalizes a recent result by Kerr and Li, stating that every odometer is Shannon orbit equivalent to the universal odometer. When the flexible class is a singleton, the rank-one transformation given by the main result is explicit. This applies to odometers and Chacon’s map. We also prove that strongly mixing systems, systems with a given eigenvalue, or irrational rotations whose angle belongs to any fixed non-empty open subset of the real line form flexible classes. In particular, strong mixing, rationality or irrationality of the eigenvalues are not preserved under Shannon orbit equivalence.
Read full abstract- Home
- Search
Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Reset All
Filter 1
Cancel
Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Reset All
Filter 1
Export
Sort by: Relevance