Abstract

To investigate the potential of inflammation to induce new adipose tissue formation in the in vivo environment. Using an established model of in vivo adipogenesis, a silicone chamber containing a Matrigel and fibroblast growth factor 2 (1 microg/ml) matrix was implanted into each groin of an adult male C57Bl6 mouse and vascularized with the inferior epigastric vessels. Sterile inflammation was induced in one of the two chambers by suspending Zymosan-A (ZA) (200-0.02 microg/ml) in the matrix at implantation. Adipose tissue formation was assessed at 6, 8, 12 and 24 weeks. ZA induced significant adipogenesis in an inverse dose-dependent manner (P<0.001). At 6 weeks adipose tissue formation was greatest with the lowest concentrations of ZA and least with the highest. Adipogenesis occurred both locally in the chamber containing ZA and in the ZA-free chamber in the contralateral groin of the same animal. ZA induced a systemic inflammatory response characterized by elevated serum tumour necrosis factor-alpha levels at early time points. Aminoguanidine (40 microg/ml) inhibited the adipogenic response to ZA-induced inflammation. Adipose tissue formed in response to ZA remained stable for 24 weeks, even when exposed to the normal tissue environment. These results demonstrate that inflammation can drive neo-adipogenesis in vivo. This suggests the existence of a positive feedback mechanism in obesity, whereby the state of chronic, low-grade inflammation, characteristic of the condition, may promote further adipogenesis. The mobilization and recruitment of a circulating population of adipose precursor cells is likely to be implicated in this mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call