Abstract
Zymomonas mobilis is a microorganism with extremely high sugar consumption and ethanol production rates and is generally considered to hold great potential for biotechnological applications. However, its genetic engineering is still difficult, hampering the efficient construction of genetically modified strains. In this work, we present Zymo-Parts, a modular toolbox based on Golden-Gate cloning offering a collection of promoters (including native, inducible, and synthetic constitutive promoters of varying strength), an array of terminators and several synthetic ribosomal binding sites and reporter genes. All these parts can be combined in an efficient and flexible way to achieve a desired level of gene expression, either from plasmids or via genome integration. Use of the GoldenBraid-based system also enables an assembly of operons consisting of up to five genes. We present the basic structure of the Zymo-Parts cloning system, characterize several constitutive and inducible promoters, and exemplify the construction of an operon and of chromosomal integration of a reporter gene. Finally, we demonstrate the power and utility of the Zymo-Parts toolbox for metabolic engineering applications by overexpressing a heterologous gene encoding for the lactate dehydrogenase of Escherichia coli to achieve different levels of lactate production in Z. mobilis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.