Abstract

Protein phosphorylation catalyzed by the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is implicated in regulating zygotic gene activation in the two-cell mouse embryo (Poueymirou and Schultz; Dev Biol 133:588-599, 1989). We now provide evidence that H8, which is a PKA inhibitor, inhibits expression of an hsp70-driven beta-galactosidase reporter gene and that the concentration-dependence of this inhibition is similar to that for inhibiting expression of a stage-specific gene(s) that is a product of zygotic gene activation. We also demonstrate that neither cAMP nor serum can stimulate the expression, as detected by a histochemical assay, of a cAMP response element (CRE)- or serum response element (SRE)-driven beta-galactosidase reporter gene, respectively, in either germinal vesicle-intact oocytes or aphidicolin-arrested one-cell embryos that are chronologically at the tw-cell stage. In contrast, although 12-O-tetradecanoyl phorbol-13-acetate (TPA) does not stimulate expression of a TPA response element (TRE)-driven beta-galactosidase reporter gene in germinal vesicle-intact oocytes, it stimulates such expression in aphidicolin-arrested one-cell embryos. Moreover, TPA can stimulate the expression of either a CRE- or an SRE-driven beta-galactosidase reporter gene in such embryos. Results of these studies further implicate protein phosphorylation in regulating zygotic gene activation, along with its role in modulating enhancer function in the early mouse embryo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.