Abstract

Tests were made of the effects of altering nitrogen metabolism in zygote donor ewes on fetal development and expression of the gene encoding the type II insulin-like growth factor receptor ( IGF2R) following the transfer of ovine embryos cultured from these zygotes, either in the absence or presence of serum. Zygotes, recovered from superovulated ewes (32 on a urea supplemented (30 g urea/kg) diet (high N) and 32 on a control diet (low N)) 36 h after intrauterine AI using semen from a single sire, were cultured for 5 days in synthetic oviductal fluid (SOF) media either with BSA and amino acids (SOF−) or with 10% (v/v) steer serum (SOF+). In total, 166 embryos, including 30 in vivo controls, were transferred singly at day 6 post-AI to synchronous recipients and the products of conception recovered at day 125 of gestation. Elevated plasma urea concentrations in zygote donors were associated with accelerated early embryo development, low pregnancy rates (16%) for embryos from the high N, SOF+ treatment, and significantly influenced fetal development and the expression of IGF2R in the fetal heart at day 125 of gestation. Importantly, the culture of sheep zygotes under serum-free conditions led to a high incidence of aberrant conceptus development and IGF2R expression. Consequently, maternal nitrogen metabolism prior to zygote recovery and in vitro culture can influence fetal development and the expression of an imprinted gene following embryo transfer, and these data support the notion that environmental effects on the follicle-enclosed oocyte may contribute to the etiology of the Large Offspring Syndrome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call