Abstract

Zygosaccharomyces kombuchaensis was recently discovered in the 'tea fungus' used to make fermented tea. Z. kombuchaensis was shown by ribosomal DNA sequencing to be a novel species, and a close relative of Zygosaccharomyces lentus, from which it could not be distinguished by conventional physiological tests. Z. lentus was originally established as a new taxon by growth at 4 degrees C, sensitivity for heat and oxidative stress, and lack of growth in aerobic shaken culture at temperatures above 25 degrees C. Subsequent analysis of Z. kombuchaensis reveals that this species shares these unusual characteristics, confirming its close genealogical relationship to Z. lentus. Detailed physiological data from a number of Z. kombuchaensis and Z. lentus strains clearly demonstrate that these two species can in fact be distinguished from one another based on their differing resistance/sensitivity to the food preservatives benzoic acid and sorbic acid. The spoilage yeasts Zygosaccharomyces bailii and Z. lentus are resistant to both acetic acid and sorbic acid, whereas Z. kombuchaensis is resistant to acetic acid but sensitive to sorbic acid. This would indicate that Z. kombuchaensis strains lack the mechanism for resistance to sorbic acid, but possess the means of resistance to acetic acid. This observation would therefore suggest that these two resistance mechanisms are different, and that in all probability acetic and sorbic acids inhibit yeast growth by different modes of action. Z. kombuchaensis strains were also sensitive to benzoic acid, again suggesting inhibition dissimilar from that to acetic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.