Abstract

Fumarioideae (20 genera, 593 species) is a clade of Papaveraceae (Ranunculales) characterized by flowers that are either disymmetric (i.e. two perpendicular planes of bilateral symmetry) or zygomorphic (i.e. one plane of bilateral symmetry). In contrast, the other subfamily of Papaveraceae, Papaveroideae (23 genera, 230 species), has actinomorphic flowers (i.e. more than two planes of symmetry). Understanding of the evolution of floral symmetry in this clade has so far been limited by the lack of a reliable phylogenetic framework. Pteridophyllum (one species) shares similarities with Fumarioideae but has actinomorphic flowers, and the relationships among Pteridophyllum, Papaveroideae and Fumarioideae have remained unclear. This study reassesses the evolution of floral symmetry in Papaveraceae based on new molecular phylogenetic analyses of the family. Maximum likelihood, Bayesian and maximum parsimony phylogenetic analyses of Papaveraceae were conducted using six plastid markers and one nuclear marker, sampling Pteridophyllum, 18 (90%) genera and 73 species of Fumarioideae, 11 (48%) genera and 11 species of Papaveroideae, and a wide selection of outgroup taxa. Floral characters recorded from the literature were then optimized onto phylogenetic trees to reconstruct ancestral states using parsimony, maximum likelihood and reversible-jump Bayesian approaches. Pteridophyllum is not nested in Fumarioideae. Fumarioideae are monophyletic and Hypecoum (18 species) is the sister group of the remaining genera. Relationships within the core Fumarioideae are well resolved and supported. Dactylicapnos and all zygomorphic genera form a well-supported clade nested among disymmetric taxa. Disymmetry of the corolla is a synapomorphy of Fumarioideae and is strongly correlated with changes in the androecium and differentiation of middle and inner tepal shape (basal spurs on middle tepals). Zygomorphy subsequently evolved from disymmetry either once (with a reversal in Dactylicapnos) or twice (Capnoides, other zygomorphic Fumarioideae) and appears to be correlated with the loss of one nectar spur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.