Abstract

Zwitterionic platinum group metal complexes that feature formal charge separation between a cationic metal fragment and a negatively charged ancillary ligand combine the desirable reactivity profile of related cationic complexes with the broad solubility and solvent tolerance of neutral species. As such, zwitterionic complexes of this type have emerged as attractive candidates for a diversity of applications, most notably involving the breaking and/or forming of E-H and E-C sigma bonds involving a main group element E. Important advances in ancillary ligand design are documented that have enabled the construction of platinum group metal zwitterions. Also summarized are the results of stoichiometric and catalytic investigations in which the reactivity of such zwitterions and their more traditionally employed cationic relatives in sigma bond activation chemistry are compared and contrasted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.