Abstract

Aromatherapy is widely used in the treatment of diseases of the central nervous system, such as depression and anxiety. However, the rapid and uncontrolled release of aroma weakens the effects of aromatherapy. In this study, zwitterionic polymer-based nanoparticles encapsulated with linalool were prepared to improve the regulation of the central nervous system. First, the nanoparticles were modified with positive charges to adhere to the surface of silk via electrostatic interactions between the cationic nanoparticles and anionic silk. Besides, the fragrance was sustainably and controllably released from the nanoparticles. The effects of polymerization degree, polymer structure, and zeta potential on encapsulation efficiency, adhesion efficiency, and release profiles of linalool were then explored. The results showed that the linalool-encapsulated nanoparticles had the best performances of encapsulation, adhesion and release of fragrance when the polymerization degrees of hydrophilic block and hydrophobic block were 20 and 5, respectively. In addition, open field tests evaluated the regulation of nanoparticles on the central nervous system at the behavioral level. Measurements of dopamine, acetylcholine, and γ-aminobutyric acid expressions explored the mechanism of moderating effects on the central nervous system at the molecular level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.