Abstract

AbstractConductive hydrogels have emerged as fascinating materials applied in flexible electronics because of their integrated conductivity and mechanical flexibility. However, the large amounts of water in conductive hydrogels inevitably freeze at subzero temperature, causing a reduction of their ionic transport ability and elasticity. Herein, the bioinspired antifreezing agents—zwitterionic osmolytes (e.g., betaine, proline) are first proposed to prevent ammonium chloride‐containing Ca‐alginate/polyacrylamide hydrogels from freezing. With a facile one‐pot solvent displacement method, the zwitterionic osmolytes can displace the water molecules inside the hydrogels. Due to the excellent freeze tolerance of zwitterionic osmolytes, the resulting zwitterionic osmolyte‐based hydrogels exhibit outstanding ionic conductivity (up to ≈2.7 S m−1) at −40 °C, which exceeds the conductivities of most reported conductive hydrogels. Meanwhile, they present stable mechanical flexibility over a wide temperature range (−40 to 25 °C). More importantly, two types of the resulting hydrogel‐based flexible electronics, including a capacitive sensor and a resistive sensor, can maintain their response function at −40 °C. This work offers a new solution to fabricate conductive hydrogels with antifreezing ability, which can broaden the working temperature range of flexible electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.