Abstract
Zwitterionic materials can exhibit unique characteristics and are highly tunable by variation to the covalently bound cationic and anionic moieties. Despite the breadth of properties and potential uses reported to date, for electrolyte applications they have thus far primarily been used as additives or for making polymer gels. However, zwitterions offer intriguing promise as electrolyte matrix materials that are non-volatile and charged but non-migrating. Here we report a family of zwitterions that exhibit molecular disorder and plasticity, which allows their use as a solid-state conductive matrix. We have characterized the thermal, morphological and structural properties of these materials using techniques including differential scanning calorimetry, scanning electron microscopy, solid-state NMR and X-ray crystallography. We report the physical and transport properties of zwitterions combined with lithium salts and a lithium-functionalized polymer to form solid or high-salt-content liquid electrolytes. We demonstrate that the zwitterion-based electrolytes can allow high target ion transport and support stable lithium metal cell cycling. The ability to use disordered zwitterionic materials as electrolyte matrices for high target ion conduction, coupled with an extensive scope for varying the chemical and physical properties, has important implications for the future design of non-volatile materials that bridge the choice between traditional molecular and ionic solvent systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.