Abstract

Zwitterions (ZIs), which are molecules bearing an equal number of positive and negative charges and typically possessing large dipole moments, can play an important role in improving the characteristics of a wide variety of novel battery electrolytes. Significant Coulombic interactions among ZI charged groups and any mobile ions present can lead to several beneficial phenomena within electrolytes, such as increased salt dissociation, the formation of ordered pathways for ion transport, and enhanced mechanical robustness. In some cases, ZI additives can also boost electrochemical stability at the electrolyte/electrode interface and enable longer battery cycling. Here, a brief summary of selected key historical and recent advances in the use of ZI materials to enrich the performance of three distinct classes of battery electrolytes is presented. These include: ionic liquid-based, conventional solvent-based, and solid matrix-based (non-ceramic) electrolytes. Exploring a greater chemical diversity of ZI types and electrolyte pairings will likely lead to more discoveries that can empower next-generation battery designs in the years to come.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call