Abstract

Solar distillation is regarded as a nearly ideal sustainable technology for clean water generation. However, micro- and macro-foulers live in the natural water and volatile organic compounds induced by overdischarging of wastewater are still the main challenges of solar distillation. Herein, a compositive strategy is presented to fabricate self-floatable catalytic evaporators with both solar distillation and organic pollutant degradation, through Fe MOF-loaded electrospinning and antibiofouling zwitterionic coating. The obtained catalytic evaporator with a fibrous structure can lead to enhanced solar distillation rate (1.43 kg m-2h−1) and conversion efficiency (89.41%). More importantly, the zwitterionic hydrogel coating endows the evaporator with superhydrophilicity for continuous water pumping and fascinating multi-contamination repellence against bacteria, alga, oil and salt, and the Fe MOF enables organic pollutants decomposition via photo-Fenton reaction. The currently designed catalytic evaporator integrates the above merits and is expected to provide a new dimension for the designing of multifunctional solar evaporation devices, solving the device contamination and organic residue issues in water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.